Development of the Enteric Nervous System

  • Chapter
  • First Online:
Hirschsprung's Disease and Allied Disorders
  • 1037 Accesses

Abstract

The development of the enteric nervous system (ENS) requires the complex interaction of genes encoding transcription factors, signalling molecules and their receptors. Normal ENS development is based on survival of neural crest-derived cells and their coordinated proliferation, movement and differentiation into neurons and glia. These processes are influenced by the microenvironment of the develo** gut. Alterations in gene function, defects in neural crest cells or changes in the gut microenvironment may result in abnormal development of the ENS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gershon MD, Jerde SM. The nervous system of the gut. Gastroenterology. 1981;80:1571–94.

    Article  CAS  PubMed  Google Scholar 

  2. Nagy N, Goldstein AM. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Furness JB, Clere N, Vogalis F, Stebbing MJ. The enteric nervous system and its extrinsic connections. In: Yamada T, Alpers DH, editors. Textbook of gastroenterology. Philadelphia: Lippincott Williams; 2003. p. 13–34.

    Google Scholar 

  4. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81(1–3):87–96.

    Article  CAS  PubMed  Google Scholar 

  5. Montgomery RK, Mulberg AE, Grand RJ. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology. 1999;116:702–31.

    Article  CAS  PubMed  Google Scholar 

  6. Bates MD. Development of the enteric nervous system. Clin Perinatol. 2002;29:97–114.

    Article  CAS  PubMed  Google Scholar 

  7. Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg. 2002;36:551–67.

    Article  Google Scholar 

  8. Puri P, Ohsiro K, Wester T. Hirschsprung’s disease: a search for etiology. Semin Pediatr Surg. 1998;7:140–7.

    Article  CAS  PubMed  Google Scholar 

  9. Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2001;38:729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993;24:199–214.

    Article  CAS  PubMed  Google Scholar 

  11. Goyal RK, Hirano I. The enteric nervous system. N Engl J Med. 1996;334:1106–15.

    Article  CAS  PubMed  Google Scholar 

  12. Gershon MD. The enteric nervous system: a second brain. Hosp Pact. 1999;34:31–2, 35–8, 41–2

    Article  CAS  Google Scholar 

  13. Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954;101:515–41.

    Article  CAS  PubMed  Google Scholar 

  14. Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973;30:31–48.

    PubMed  Google Scholar 

  15. Pomeranz HD, Gershon MD. Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol. 1990;137:378–94.

    Article  CAS  PubMed  Google Scholar 

  16. Burns AJ, Le Duoarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125:4335–47.

    CAS  PubMed  Google Scholar 

  17. Caniano DA, Ormsbee HS III, Polito W. Total intestinal aganglionosis. J Pediatr Surg. 1985;20:456–60.

    Article  CAS  PubMed  Google Scholar 

  18. Burns AJ, Delalande JM, Le Douarin NM. In ovo transplantation of enteric nervous system precursors from vagal to sacral neural crest results in extensive hindgut colonisation. Development. 2002;129(12):2785–96.

    CAS  PubMed  Google Scholar 

  19. Gariepy CE. Developmental disorders of the enteric nervous system: genetic and molecular bases. J Pediatr Gastroenterol Nutr. 2004;39:5–11.

    Article  PubMed  Google Scholar 

  20. Allan IJ, Newgreen DF. The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am J Anat. 1980;157(157):137–54.

    Article  CAS  PubMed  Google Scholar 

  21. Meijers JHC, Tibboel D, Van der Kamp AWM. A model for aganglionosis in the chicken embryo. J Pediatr Surg. 1989;24:557–61.

    Article  CAS  PubMed  Google Scholar 

  22. Kapur RP. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol. 2000;227:146–55.

    Article  CAS  PubMed  Google Scholar 

  23. Burns AJ, Champeval D, le Douarin NM. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol. 2000;219:30–43.

    Article  CAS  PubMed  Google Scholar 

  24. Young HM, Hearn CJ, Ciampoli D, Southwell BR, Brunet JF, Newgreen DF. A single rostrocaudal colonization of the rodent intestine by enteric precursors is revealed by the expression of Phox2b, Ret, and p75 and by explants grown under the kidney capsule in organ culture. Dev Biol. 1998;202:67–84.

    Article  CAS  PubMed  Google Scholar 

  25. Erickson CA, Goins TL. Sacral neural crest cell migration to the gut is dependent upon migratory environment and not cell-autonomous migratory properties. Dev Biol. 2000;219:79–97.

    Article  CAS  PubMed  Google Scholar 

  26. Serbedzija GN, Burgan S, Fraser SE, Bronner-Fraser M. Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos. Development. 1991;111:857–66.

    CAS  PubMed  Google Scholar 

  27. Pomeranz HD, Rothman TP, Gershon MD. Colonization of the post-umbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and replication-deficient retrovirus. Development. 1991;111:647–55.

    CAS  PubMed  Google Scholar 

  28. Fujimoto T, Hata J, Yokoyama S, Mitomi T. A study of the extracellular matrix protein as the migration pathway of neural crest cells in the gut: Analysis in human embryos with special reference to the pathogenesis of Hirschsprung’s disease. J Pediatr Surg. 1989;24:550–6.

    Article  CAS  PubMed  Google Scholar 

  29. Le Douarin NM, Dupin E, Ziller C. Genetic and epigenetic controls in neural crest development. Curr Opin Genet Dev. 1994;4:685–95.

    Article  PubMed  Google Scholar 

  30. Taraviras S, Pachnis V. Development of the mammalian enteric nervous system. Curr Opin Genet Dev. 1999;9:321–7.

    Article  CAS  PubMed  Google Scholar 

  31. Young HM, Hearn CJ, Newgreen DF. Embryology and development of enteric nervous system. Gut. 2000;47:iv12–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Uesaka T, Nagashimada M, Enomoto H. Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci. 2015;35:9879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM, Enomoto H. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci. 2016;15:1211–8.

    Article  CAS  Google Scholar 

  34. Young HM, Newgreen DF. Enteric neural crest-derived cells: origin, identification, migration, and differentiation. Anat Rec. 2001;262:1–15.

    Article  CAS  PubMed  Google Scholar 

  35. Rothman TP, Le Douarin NM, Fontaine-Perus JC, Gershon MD. Colonization of the bowel by neural crest-derived cells migrating from foregut backtransplanted to vagal or sacral regions of host embryos. Dev Dyn. 1993;196:217–33.

    Article  CAS  PubMed  Google Scholar 

  36. Roman V, Bagyanszki M, Krecsmarik M, Horvath A, Resch BA, Fekete E. Spatial pattern analysis of nitrergic neurons in the develo** myenteric plexus of the human fetal intestine. Cytometry A. 2004;57A:108–12.

    Article  Google Scholar 

  37. Matini P, Mayer B, Faussone-Pellegrini MS. Neurochemical differentiation of rat enteric neurons during pre- and postnatal life. Cell Tissue Res. 1997;288:11–23.

    Article  CAS  PubMed  Google Scholar 

  38. Brandt CT, Tam PKH, Gould SJ. Nitrergic innervation of the human during early foetal development. J Pediatr Surg. 1996;31:661–4.

    Article  CAS  PubMed  Google Scholar 

  39. Grand RJ, Watkins JB, Torti FM. Development of the human gastrointestinal tract. A review. Gastroenterology. 1976;70:790–810.

    Article  CAS  PubMed  Google Scholar 

  40. Dumont RC, Rudolph CD. Development of gastrointestinal motility in the infant and child. Gastroenterol Clin North Am. 1994;23:655–71.

    CAS  PubMed  Google Scholar 

  41. Berseth CL, Nordyke CK. Manometry can predict feeding readiness in preterm infants. Gastroenterology. 1992;103:1523–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gershon MDV. Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am J Physiol. 1998;275:G869–73.

    CAS  PubMed  Google Scholar 

  43. Wester T, O’Briain S, Puri P. Morphometric aspects of the submucous plexus in whole-mount preparations of normal human distal colon. J Pediatr Surg. 1998;33(4):619–22.

    Article  CAS  PubMed  Google Scholar 

  44. Wester T, O’Briain S, Puri P. Notable postnatal alterations in the myenteric plexus of normal human bowel. Gut. 1999;44:666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319:367–382, 2005.

    Article  PubMed  Google Scholar 

  46. Gariepy CE. Intestinal motility disorders and development of the enteric nervous system. Pediatr Res. 2000;49:605–13.

    Article  Google Scholar 

  47. Parisi MA, Kapur RP. Genetics of Hirschsprung’s disease. Curr Opin Pediatr. 2000;12:610–7.

    Article  CAS  PubMed  Google Scholar 

  48. Passarge E. Dissecting Hirschsprung’s disease. Nat Genet. 2002;31:11–2.

    Article  CAS  PubMed  Google Scholar 

  49. Heuckeroth RO, Schäfer KH. Gene-environment interactions and the enteric nervous system: neural plasticity and Hirschsprung disease prevention. Dev Biol. 2016;417:188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances part 1. Pediatr Dev Pathol. 2002;5:224–47.

    CAS  PubMed  Google Scholar 

  51. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances part 2. Pediatr Dev Pathol. 2002;5:329–49.

    Article  PubMed  Google Scholar 

  52. **g S, Wen D, Yu Y, Holst PJ, Fang M, Tamir R, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell. 1996;85:1113–24.

    Article  CAS  PubMed  Google Scholar 

  53. **g S, Yu Y, Fang M, Hu Z, Holst PL, Boone T, et al. GFRα-2 and GFRα-3 are two new receptors for ligands of the GDNF family. J Biol Chem. 1997;272:33111–7.

    Article  CAS  PubMed  Google Scholar 

  54. Chalazonitis A, Rothman TP, Chen J, Gershon MD. Age-dependent differences in the effects of GDNF and NT-3 on the development of neurons and glia from neural crest-derived precursors immunoselected from the fetal rat gut: expression of GFRalpha-1 in vitro and in vivo. Dev Biol. 1998;204:385–406.

    Article  CAS  PubMed  Google Scholar 

  55. Hearn CJ, Murphy M, Newgreen D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol. 1998;197:93–105.

    Article  CAS  PubMed  Google Scholar 

  56. Heuckeroth RO, Lampe PA, Johnson EM, Milbrandt J. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol. 1998;200:116–29.

    Article  CAS  PubMed  Google Scholar 

  57. Taraviras S, Marcos-Gutierrez CV, Durbec P, Jani H, Grigoriou M, Sukumaran M, Wang LC, Hynes M, Raisman G, Pachnis V. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development. 1999;126:2785–97.

    CAS  PubMed  Google Scholar 

  58. Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron. 2003;40:905–16.

    Article  CAS  PubMed  Google Scholar 

  59. Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD, Goldstein AM. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn. 2011;240:1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schuchardt A, D’Agati V, Larsson-Blumberg L, Constantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367:380–3.

    Article  CAS  PubMed  Google Scholar 

  61. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang EP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  62. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382:76–9.

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:10–73.

    Article  Google Scholar 

  64. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21:317–24.

    Article  CAS  PubMed  Google Scholar 

  65. Luo Y, Cecchernin I, Pasini B, Matera I, Bicochi MP, Barone V, et al. Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung’s disease. Hum Mol Genet. 1993;2:1803–8.

    Article  CAS  PubMed  Google Scholar 

  66. Romeo G, Ronchetto P, Luo Y, Barone V, Seti M, Ceccherini I, et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367:377–87.

    Article  CAS  PubMed  Google Scholar 

  67. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367:378–80.

    Article  CAS  PubMed  Google Scholar 

  68. Kusafuka T, Puri P. Altered RET gene mRNA expression in Hirschsprung’s disease. J Pediatr Surg. 1997;32:600–4.

    Article  CAS  PubMed  Google Scholar 

  69. Kusafuka T, Puri P. The RET proto-oncogene: a challenge to understanding of disease pathogenesis. Pediatr Surg Int. 1997;12:11–8.

    Article  CAS  PubMed  Google Scholar 

  70. Martucciello G, Ceccherini I, Lerone M, Jasonni V. Pathogenesis of Hirschsprung’s disease. J Pediatr Surg. 2000;35:1017–25.

    Article  CAS  PubMed  Google Scholar 

  71. Uesaka T, Nagashimada M, Yonemura S, Enomoto H. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Investig. 2008;118:1890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H. Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development. 2007;134:2171–81.

    Article  CAS  PubMed  Google Scholar 

  73. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996;54:95–105.

    Article  CAS  PubMed  Google Scholar 

  74. Worley DS, Pisano JM, Choi ED, Walus L, Hession CA, Cate RL, et al. Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development. 2000;127:4383–93.

    CAS  PubMed  Google Scholar 

  75. Fock PJ, Schiltz CA, Jones SE. Enteric neuroblasts require the phosphatidylinositol 3-kinase pathway for GDNF-stimulated proliferation. J Neurobiol. 2001;47:306–17.

    Article  Google Scholar 

  76. Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric cells. Dev Biol. 2001;229:503–16.

    Article  CAS  PubMed  Google Scholar 

  77. Durbec P, Marcos-Guitierrez CV, Klikenny C, Grigoriou M, Wartiowaara K, Suvanto P, et al. GDNF signaling through the ret receptor tyrosine kinase. Nature. 1996;381:789–93.

    Article  CAS  PubMed  Google Scholar 

  78. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivates. Nature. 1999;399:366–77.

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez M, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382:70–3.

    Article  CAS  PubMed  Google Scholar 

  80. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382:73–6.

    Article  CAS  PubMed  Google Scholar 

  81. Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, et al. Mutations analysis of the RET receptor tyrosine kinase in Hirschsprung’s disease. Hum Mol Genet. 1995;4:821–80.

    Article  CAS  PubMed  Google Scholar 

  82. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79:1277–85.

    Article  CAS  PubMed  Google Scholar 

  83. Leibl MA, Ota T, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, et al. Expression of endothelin-3 by mesenchymal cells of embryonic mouse caecum. Gut. 1999;44:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79:1267–76.

    Article  CAS  PubMed  Google Scholar 

  85. Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg. 1997;32:501–4.

    Article  CAS  PubMed  Google Scholar 

  86. Kusafuka T, Wang Y, Puri P. Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung’s disease. Hum Mol Genet. 1996;5:347–9.

    Article  CAS  PubMed  Google Scholar 

  87. Kusafuka T, Puri P. Mutations of the endothelin-B receptor and endothelin-3 genes in Hirschsprung’s disease. Pediatr Surg Int. 1997;12:19–23.

    Article  CAS  PubMed  Google Scholar 

  88. Bidaud C, Salomon R, Pelet A, van Camp G, Attie T, Eng C, et al. Endothelin-3 gene in isolated and syndromic Hirschsprung’s disease. Eur J Hum Genet. 1997;5:247–51.

    CAS  PubMed  Google Scholar 

  89. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung’s disease. Hum Mol Genet. 1996;5:355–7.

    Article  CAS  PubMed  Google Scholar 

  90. Oue T, Puri P. Altered endothelin-3 and endothelin-B receptor mRNA expression in Hirschsprung’s disease. J Pediatr Surg. 1999;34:1257–60.

    Article  CAS  PubMed  Google Scholar 

  91. Abe Y, Sakurai T, Yamada T, Nakamura T, Yanagisawa M, Goto K. Functional analysis of five endothelin-B receptor mutations found in human Hirschsprung’s disease patients. Biochem Biophys Res Commun. 2000;275:524–31.

    Article  CAS  PubMed  Google Scholar 

  92. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, et al. Dual genetic pathways of endothelin-mediated intercellular signalling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125:825–36.

    CAS  PubMed  Google Scholar 

  93. Gershon MD. Endothelin and the development of the enteric nervous system. Clin Exp Pharmacol Physiol. 1999;26:1161–73.

    Article  Google Scholar 

  94. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutations disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 1998;18:60–4.

    Article  CAS  PubMed  Google Scholar 

  95. Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 1998;18:237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kapur RP. Early death of neural crest cells is responsible for total enteric aganglionosis in Sox10 (Dom)/Sox10 (Dom) mouse embryos. Pediatr Dev Pathol. 1999;2:559–69.

    Article  CAS  PubMed  Google Scholar 

  97. Paratore C, Eichenberger C, Suter U, Sommer L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet. 2002;11:3075–85.

    Article  CAS  PubMed  Google Scholar 

  98. Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V. Maintenance of mammalian enteric nervous system progenitors by Sox10 and endothelin 3 signalling. Development. 2006;133:2075–86.

    Article  CAS  PubMed  Google Scholar 

  99. Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF, Amiel J, Trochet T, Wakayama T, Enomoto H. Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J Clin Invest. 2016;122:3135–58.

    Google Scholar 

  100. **ault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, et al. SOX 10 mutations in patients with Waardenburg-Hirschsprung’s disease. Nat Genet. 1998;18:171–3.

    Article  CAS  PubMed  Google Scholar 

  101. Kuhlbrodt M, Schmidt C, Sock E, **ault V, Bondurand N, Goosssens M, et al. Functional analysis of Sox 10 mutations found in human Waardenburg-Hirschsprung’s disease. J Biol Chem. 1998;273:23033–8.

    Article  CAS  PubMed  Google Scholar 

  102. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. Expression and interactions of the two closely related homebox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124:4065–75.

    CAS  PubMed  Google Scholar 

  103. Hatano M, Aoki T, Dezawa M, Yusa S, Iitsuka Y, Koseki H, et al. A novel pathogenesis of megacolon in NCX/HOX11L1 deficient mice. J Clin Invest. 1997;100:795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shirasawa S, Yunker AMR, Roth KA, Brown GA, Horning S, et al. ENX (HOX11L1) deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med. 1997;3:646–50.

    Article  CAS  PubMed  Google Scholar 

  105. Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM, Goldstein AM. Endothelial cells promote migration and proliferation of enteric neural crest cells via beta 1 integrin signaling. Dev Biol. 2009;330:263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotto R, Molnar D, Goldstein AM. Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol. 2013;125:4483–96.

    Google Scholar 

  107. Breau MA, Dahmani A, Broders-Bondon F, Thiery JP, Dufour S. Beta 1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development. 2009;136:2791–801.

    Article  CAS  PubMed  Google Scholar 

  108. Nagy N, Goldstein AM. Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol. 2006;293:203–17.

    Article  CAS  PubMed  Google Scholar 

  109. Soret R, Mennetrey M, Bergeron KF, Dariel A, Neinlist M, Grunder F, Faure C, Silverside DW, Pilon N. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J Clin Invest. 2017;125:4483–96.

    Article  Google Scholar 

  110. Rothman TP, Chen J, Howard MJ, Costantini F, Schuchardt A, Pachnis V, et al. Increased expression of laminin-1 and collagen (IV) subunits in the aganglionic bowel of ls/ls, but not c-ret−/− mice. Dev Biol. 1996;178:498–513.

    Article  CAS  PubMed  Google Scholar 

  111. Parikh DH, Tam PK, Van Velzen D, Edgar D. The extracellular matrix components, tenascin and fibronectin, in Hirschsprung’s disease: an immunohistochemical study. J Pediatr Surg. 1994;29:1302–6.

    Article  CAS  PubMed  Google Scholar 

  112. Parikh DH, Leibl M, Tam PK, Edgar D. Abnormal expression and distribution of nidogen in Hirschsprung’s disease. J Pediatr Surg. 1995;30:1687–93.

    Article  CAS  PubMed  Google Scholar 

  113. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995;373:347–9.

    Article  CAS  PubMed  Google Scholar 

  114. Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59:384–401.

    Article  CAS  PubMed  Google Scholar 

  115. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116:369–75.

    CAS  PubMed  Google Scholar 

  116. Feldstein AE, Miller SM, El-Youssef M, Rodeberg D, Lindor NM, Burgart LJ, et al. Chronic intestinal pseudoobstruction associated with altered interstitial cells of Cajal networks. J Pediatr Gastroenterol Nutr. 2003;36:492–7.

    Article  PubMed  Google Scholar 

  117. Hagger R, Finlayson C, Kahn F, De Oliveira R, Chimelli L, Kumar D. A deficiency of interstitial cells of Cajal in Chagasic megacolon. J Auton Nerv Syst. 2000;80:108–11.

    Article  CAS  PubMed  Google Scholar 

  118. Kenny S, Connell MG, Rintala RJ, Vaillant C, Edgar DH, Lloyd DA. Abnormal colonic interstitial cells of Cajal in children with anorectal malformations. J Pediatr Surg. 1998;33:130–2.

    Article  CAS  PubMed  Google Scholar 

  119. Rolle U, Piotrowska AP, Nemeth L, Puri P. Altered distribution of interstitial cells of Cajal in Hirschsprung’s disease. Arch Pathol Lab Med. 2002;126:928–33.

    PubMed  Google Scholar 

  120. Tong WD, Liu BH, Zhang LY, Zhang SB, Lei Y. Decreased interstitial cells of Cajal in the sigmoid colon of patients with slow transit constipation. Int J Colorectal Dis. 2004;19:467–73.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Rolle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rolle, U., Puri, P. (2019). Development of the Enteric Nervous System. In: Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-15647-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15647-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15646-6

  • Online ISBN: 978-3-030-15647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation