Endocrinology of Maternal-Placental Axis

  • Reference work entry
  • First Online:
Female Reproductive Dysfunction

Part of the book series: Endocrinology ((ENDOCR))

  • 750 Accesses

Abstract

Pregnancy is a dynamic and complex state to which the mother’s physiology makes substantial adaptations that enable her to provide all the needs of the growing fetus. The placenta is a highly active, transient endocrine organ and a central regulator of maternal-placental-fetal physiology. It produces steroid and protein hormones, growth factors, and cytokines from precursor provided by the mother as well as by the fetus. Cytotrophoblasts secrete hypothalamic peptides and function in juxtaposition to syncytiotrophoblasts, which secrete the corresponding pituitary-like peptides in an anatomic arrangement analogous to the hypothalamic-pituitary axis. Some placental hormones play a predominant role at the beginning of pregnancy, favoring implantation and embryo development, while others exert their functions mainly in the second or third trimester, to maintain pregnancy and ensure appropriate fetal growth. Estrogens and progesterone are involved in pregnancy from before implantation to parturition. There are substances that are responsible of regulating maternal metabolic adaptation to pregnancy, in order to allow transfer of glucose and amino acids into the fetus. Many of these substances act in concert, in a complex interaction of hormones with one another, and in a fascinating cross talk between the placenta, the fetus, and the mother. The mechanisms involved in parturition are highly complex and involve endocrine factors, cytokines, oxytocin, and prostaglandins that lead the transition from a quiescent myometrium to a contractile state that allows delivery of the fetus. The endocrinology of the maternal-placental axis is still a progressive field of science, as some mechanisms are still incompletely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bass KE, Morrish D, Roth I, et al. Human cytotrophoblast invasion is up-regulated by epidermal growth factor: evidence that paracrine factors modify this process. Dev Biol. 1994;164(2): 550–61.

    CAS  PubMed  Google Scholar 

  • Bedin M, Fournier T, Cabrol D, et al. Incidence of placental sulfatase deficiency on the mode of termination of pregnancy. Gynecol Obstet Invest. 1987;24(2):86–91.

    CAS  PubMed  Google Scholar 

  • Blanks AM, Brosens JJ. Progesterone action in the myometrium and decidua in preterm birth. Facts Views Vis Obgyn. 2012;4(3):33–43.

    CAS  PubMed  Google Scholar 

  • Buster JE. Fetal adrenal cortex. Clin Obstet Gynecol. 1980;23(3):803–24.

    CAS  PubMed  Google Scholar 

  • Buster JE, Carson SA. Endocrinology and diagnosis of pregnancy. In: Niebyl SGGJR, Simpson JL, editors. Obstetrics: normal and problem pregnancies. 4th ed. Philadelphia: Churchill Livingstone; 2002. p. 3–36.

    Google Scholar 

  • Cane EM, Villee CA. The synthesis of prostaglandin F by human endometrium in organ culture. Prostaglandins. 1975;9(2):281–8.

    CAS  PubMed  Google Scholar 

  • Carbonne B, Dallot E, Haddad B, et al. Effects of progesterone on prostaglandin E(2)-induced changes in glycosaminoglycan synthesis by human cervical fibroblasts in culture. Mol Hum Reprod. 2000;6(7):661–4.

    CAS  PubMed  Google Scholar 

  • Caufriez A, Frankenne F, Hennen G, et al. Regulation of maternal IGF-I by placental GH in normal and abnormal human pregnancies. Am J Physiol. 1993;265(4 Pt 1):E572–7.

    CAS  PubMed  Google Scholar 

  • Evain-Brion D, Malassine A. Human placenta as an endocrine organ. Growth Horm IGF Res. 2003;13(Suppl A):S34–7.

    CAS  PubMed  Google Scholar 

  • Ha CT, Wu JA, Irmak S, et al. Human pregnancy specific beta-1-glycoprotein 1 (PSG1) has a potential role in placental vascular morphogenesis. Biol Reprod. 2010;83(1):27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab. 2000; 13(4):343–56.

    CAS  PubMed  Google Scholar 

  • Hassan SS, Romero R, Vidyadhari D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011;38(1):18–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson K, DeCherney AH. Endocrinology of pregnancy. In: Reece EA, Hobbins JC, editors. Medicine of the fetus & mother. 2nd ed. Philadelphia: Lippincott-Raven Publishers; 1999. p. 85–103.

    Google Scholar 

  • Librach CL, Feigenbaum SL, Bass KE, et al. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem. 1994;269(25):17125–31.

    CAS  PubMed  Google Scholar 

  • Liu JH. Endocrinology of pregnancy. In: Creasy RK, Resnik R, Iams JD, Lockwood CJ, Moore TR, Greene MF, editors. Creasy & Resnik maternal-fetal medicine. Philadelphia: Elsevier Saunders; 2014. p. 100–11.

    Google Scholar 

  • Maruo T, Matsuo H, Murata K, et al. Gestational age-dependent dual action of epidermal growth factor on human placenta early in gestation. J Clin Endocrinol Metab. 1992;75(5):1362–7.

    CAS  PubMed  Google Scholar 

  • Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med. 2003;348(24):2379–85.

    CAS  PubMed  Google Scholar 

  • Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J Soc Gynecol Investig. 2004;11(4):193–202.

    CAS  PubMed  Google Scholar 

  • Napso T, Yong HEJ, Lopez-Tello J, et al. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 2018;9:1091.

    PubMed  PubMed Central  Google Scholar 

  • Nishimori K, Young LJ, Guo Q, et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA. 1996;93(21):11699–704.

    CAS  PubMed  Google Scholar 

  • Noyola-Martinez N, Halhali A, Barrera D. Steroid hormones and pregnancy. Gynecol Endocrinol. 2019;35(5):376–84.

    CAS  PubMed  Google Scholar 

  • Petraglia F, Florio P, Nappi C, et al. Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev. 1996;17(2):156–86.

    CAS  PubMed  Google Scholar 

  • Petraglia F, Imperatore A, Challis JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev. 2010;31(6):783–816.

    CAS  PubMed  Google Scholar 

  • Resnik R, Killam AP, Battaglia FC, et al. The stimulation of uterine blood flow by various estrogens. Endocrinology. 1974;94(4):1192–6.

    CAS  PubMed  Google Scholar 

  • Schumacher A. Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. Int J Mol Sci. 2017;18(10):2166.

    PubMed Central  Google Scholar 

  • Shi QJ, Lei ZM, Rao CV, et al. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology. 1993;132(3):1387–95.

    CAS  PubMed  Google Scholar 

  • Siiteri PK, Febres F, Clemens LE, et al. Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant? Ann N Y Acad Sci. 1977;286:384–97.

    CAS  PubMed  Google Scholar 

  • Simpson ER, Carr BR, Parker CR Jr, et al. The role of serum lipoproteins in steroidogenesis by the human fetal adrenal cortex. J Clin Endocrinol Metab. 1979;49(1):146–8.

    CAS  PubMed  Google Scholar 

  • Simpson H, Robson SC, Bulmer JN, et al. Transforming growth factor beta expression in human placenta and placental bed during early pregnancy. Placenta. 2002;23(1):44–58.

    CAS  PubMed  Google Scholar 

  • Street ME, Grossi E, Volta C, et al. Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks. BMC Pediatr. 2008;8:24.

    PubMed  PubMed Central  Google Scholar 

  • Thomson M. The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem. 2013;69(3):559–73.

    CAS  PubMed  Google Scholar 

  • Tulchinsky D, Hobel CJ. Plasma human chorionic gonadotropin, estrone, estradiol, estriol, progesterone, and 17 alpha-hydroxyprogesterone in human pregnancy. 3. Early normal pregnancy. Am J Obstet Gynecol. 1973;117(7):884–93.

    CAS  PubMed  Google Scholar 

  • Vannuccini S, Bocchi C, Severi FM, et al. Endocrinology of human parturition. Ann Endocrinol (Paris). 2016;77(2):105–13.

    Google Scholar 

  • Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep. 2017;7(2):115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Seravalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Seravalli, V., Di Tommaso, M., Challis, J., Petraglia, F. (2020). Endocrinology of Maternal-Placental Axis. In: Petraglia, F., Fauser, B. (eds) Female Reproductive Dysfunction . Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-14782-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14782-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14781-5

  • Online ISBN: 978-3-030-14782-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation