ACA Improvement by Surface Segmentation

  • Chapter
  • First Online:
Advanced Finite Element Methods with Applications (FEM 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 128))

Included in the following conference series:

  • 984 Accesses

Abstract

In this paper, we present a modification of the clustering procedure for the fast Boundary Element Method (BEM), based on hierarchical techniques for the matrix decomposition and Adaptive Cross Approximation (ACA). An initial segmentation of the surface elements is shown to be a reasonable tool to prevent problematic blocks which appear on surfaces with edges. It leads to significantly easier control of the Partial ACA algorithm and our numerical results show perfect convergence of all numerical quantities corresponding to the theory of BEM. In particular, third order convergence is reached for the gradient of the solution inside the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Angle between the normal vectors to the triangles, see [8].

  2. 2.

    Rjasanow, S. and Weißer, S.: Surface Segmentation (Version 1.0). Saarland University, Saarbrücken, Germany (2018). See https://github.com/s-weisser/surface-segmentation.

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bebendorf, M.: Hierarchical Matrices. Lecture Notes in Computational Science and Engineering, vol. 63. Springer-Verlag, Berlin (2008). A means to efficiently solve elliptic boundary value problems

    Google Scholar 

  3. Bebendorf, M., Venn, R.: Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121(4), 609–635 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bebendorf, M., Kühnemund, A., Rjasanow, S.: An equi-directional generalization of adaptive cross approximation for higher-order tensors. Appl. Numer. Math. 74, 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bebendorf, M., Kuske, C., Venn, R.: Wideband nested cross approximation for Helmholtz problems. Numer. Math. 130(1), 1–34 (2015)

    Article  MathSciNet  Google Scholar 

  6. Börm, S., Christophersen, S.: Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2016)

    Article  MathSciNet  Google Scholar 

  7. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101(2), 221–249 (2005)

    Article  MathSciNet  Google Scholar 

  8. Gellert, W., Gottwald, S., Hellwich, M., Kästner, H., Küstner, H. (eds.) The VNR Concise Encyclopedia of Mathematics, 2nd edn. Van Nostrand Reinhold, New York (1989)

    MATH  Google Scholar 

  9. Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54(1), 388–414 (2016)

    Article  MathSciNet  Google Scholar 

  10. Grasedyck, L.: Adaptive recompression of \(\mathcal H\)-matrices for BEM. Computing 74(3), 205–223 (2005)

    Google Scholar 

  11. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal H\)-matrices. I. Introduction to \(\mathcal H\)-matrices. Computing 62(2), 89–108 (1999)

    Google Scholar 

  12. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational Mathematics, vol. 49. Springer, Berlin (2015)

    Google Scholar 

  13. Kravcenko, M., Maly, L., Merta, M., Zapletal, J.: Parallel assembly of ACA BEM matrices on Xeon Phi clusters. In: Parallel Processing and Applied Mathematics. Part I, Lecture Notes in Computer Science, vol. 10777, pp. 101–110. Springer, Cham (2018)

    Google Scholar 

  14. Mangan, A., Whitaker, R.: Partitioning 3d surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)

    Article  Google Scholar 

  15. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Nédélec, J.C.: Curved finite element methods for the solution of singular integral equations on surfaces in R 3. Comput. Methods Appl. Mech. Eng. 8(1), 61–80 (1976)

    Article  MathSciNet  Google Scholar 

  17. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2007)

    Google Scholar 

  18. Rjasanow, S., Weggler, L.: ACA accelerated high order BEM for Maxwell problems. Comput. Mech. 51(4), 431–441 (2013)

    Article  MathSciNet  Google Scholar 

  19. Rjasanow, S., Weggler, L.: Matrix valued adaptive cross approximation. Math. Methods Appl. Sci. 40(7), 2522–2531 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sauter, S., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics. Springer, Berlin (2010)

    Google Scholar 

  21. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008)

    Book  Google Scholar 

  22. Vieira, M., Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing. Comput. Aided Geom. Des. 22(8), 771–792 (2005)

    Article  MathSciNet  Google Scholar 

  23. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P.: Feature sensitive mesh segmentation with mean shift. In: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 236–243. Cambridge, USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Rjasanow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rjasanow, S., Weißer, S. (2019). ACA Improvement by Surface Segmentation. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_14

Download citation

Publish with us

Policies and ethics

Navigation