PAMOP2: Towards Exascale Computations Supporting Experiments and Astrophysics

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 18

Abstract

Our prime computational effort is to support current and future measurements of atomic photoionization cross-sections at various synchrotron radiation facilities, and ion-atom collision experiments, together with plasma, fusion and astrophysical applications. In our work we solve the Schrödinger or Dirac equation using the R-matrix or R-matrix with pseudo-states approach from first principles. Finally, we present cross-sections and rates for radiative charge transfer, radiative association, and photodissociation collision processes between atoms and ions of interest for several astrophysical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://ism.obspm.fr.

  2. 2.

    Available at, http://www.physast.uga.edu/ugamop/.

References

  1. B.M. McLaughlin, J.-M. Bizau, D. Cubaynes, S. Guilbaud, S. Douix, M.M. Al Shorman, M.O.A. El Ghazaly, I. Sahko, M.F. Gharaibeh, K-Shell photoionization of O\(^{4+}\) and O\(^{5+}\) ions: experiment and theory. Mon. Not. Roy. Astro. Soc. (MNRAS) 465 4690 (2017)

    Google Scholar 

  2. B.M. McLaughlin, Inner-shell Photoionization, Fluorescence and Auger Yields, in Spectroscopic Challenges of Photoionized Plasma, ed. by G. Ferland, D.W. Savin. Astronomical Society of the Pacific, ASP Conference Series, vol. 247, San Francisco (2001), p. 87

    Google Scholar 

  3. T.R. Kallman, Challenges of plasma modelling: current status and future plans. Space Sci. Rev. 157, 177 (2010)

    Article  Google Scholar 

  4. B.M. McLaughlin, C.P. Ballance, Photoionization, fluorescence and inner-shell processes, in McGraw-Hill Yearbook of Science and Technology, ed. by McGraw-Hill (Mc Graw Hill, New York, 2013), p. 281

    Google Scholar 

  5. B.M. McLaughlin, C.P. Ballance, Photoionization cross section calculations for the halogen-like ions Kr\(^+\) and Xe\(^+\). J. Phys. B: At. Mol. Opt. Phys. 45, 085701 (2012)

    Article  Google Scholar 

  6. B.M. McLaughlin, C.P. Ballance, Photoionization cross sections for the trans-iron element Se\(^{+}\) from 18 to 31 eV. J. Phys. B: At. Mol. Opt. Phys. 45, 095202 (2012)

    Article  Google Scholar 

  7. C.P. Ballance, D.C. Griffin, Relativistic radiatively damped R-matrix calculation of the electron-impact excitation of W\(^{46+}\). J. Phys. B: At. Mol. Opt. Phys. 39, 3617 (2006)

    Article  Google Scholar 

  8. P.H. Norrington, I.P. Grant, Low-energy electron scattering by Fe XXIII and Fe VII using the Dirac R-matrix method. J. Phys. B: At. Mol. Opt. Phys. 20, 4869 (1987)

    Article  Google Scholar 

  9. R-matrix darc and breit-pauli codes (2016). http://connorb.freeshell.org

  10. B.M. McLaughlin, C.P. Ballance, Petascale computations for large-scale atomic and molecular collisions, in Sustained Simulated Performance 2014, ed. by M.M. Resch, Y. Kovalenko, E. Fotch, W. Bez, H. Kobaysahi (Springer, New York, 2014), ch 15

    Google Scholar 

  11. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, A. Müller, PAMOP: petascale atomic, molecular and optical collisions, in High Performance Computing in Science and Engineering’14, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, New York, 2015), ch 4

    Google Scholar 

  12. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, S. Schippers, A. Müller, PAMOP: petascale computations in suport of experiments, in High Performance Computing in Science and Engineering’15, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, New York, 2016), ch 4

    Google Scholar 

  13. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, P.C. Stancil, S. Schippers, A. Müller, PAMOP project: computations in suport of experiments and astrophysical applications, in High Performance Computing in Science and Engineering’16, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, New York, 2017), ch 4

    Google Scholar 

  14. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, P.C. Stancil, J.F. Babb, S. Schippers, A. Müller, PAMOP: Large-Scale computations in suport of experiments and astrophysical applications, in High Performance Computing in Science and Engineering’17 ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, New York, 2018), ch 4

    Google Scholar 

  15. K.G. Dyall, I.P. Grant, C.T. Johnson, E.P. Plummer, GRASP: a general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425 (1989)

    Article  Google Scholar 

  16. I.P. Grant, Quantum Theory of Atoms and Molecules: Theory and Computation. (Springer, New York, USA, 2007)

    Google Scholar 

  17. P.G. Burke, R-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes. (Springer, New York, USA, 2011)

    Google Scholar 

  18. E.M. Hernández, A.M. Juárez, A.L.D. Kilcoyne, A. Aguilar, L. Hernández, A. Antillón, D. Macaluso, A. Morales-Mori, O. González-Magaña, D. Hanstorp, A.M. Covington, V. Davis, D. Calabrese, G. Hinojosa, Absolute measurements of chlorine Cl\(^{+}\) cation single photoionization cross section. JQSRT 151, 217 (2015)

    Article  Google Scholar 

  19. B.M. McLaughlin, Photoionisation of Cl\(^+\) from the \(3s^23p^4\;^3P_{2,1,0}\) and the \(3s^23p^4\;^1D_2, ^1S_0\) states in the energy range 19–28 eV. Mon. Not. Roy. Astro. Soc. (MNRAS) 464, 1990 (2017)

    Google Scholar 

  20. N.B. Tyndall, C.A. Ramsbottom, C.P. Ballance, A. Hibbert, Photoionization of \(Co^{2+}\) using the Dirac R—matrix method. Mon. Not. Roy. Astro. Soc. (MNRAS) 462, 3350 (2016)

    Google Scholar 

  21. A. Müller, S. Schippers, R.A. Phaneuf, A.M. Covington, A., Hinojosa, G., Bozek, J. Sant’Anna, M.M. Sant’Anna, A.S. Schlachter, C. Cisneros, B.M. McLaughlin, Photoionization of Ca\(^{+}\) in the valence energy region 20–56 eV: experiment and theory. J. Phys. B: At. Mol. Opt. Phys. 50, 205001 (2017)

    Article  Google Scholar 

  22. A.E. Kramida, Y. Ralchenko, J. Reader, NIST ASD team, in NIST Atomic Spectra Database (version 5.3), (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2015)

    Google Scholar 

  23. A.M. Covington, A. Aguilar, I.R. Covington, G. Hinojosa, C.A. Shirley, R.A. Phaneuf, I. Álvarez, C. Cisneros, I. Dominguez-Lopez, M.M. Sant’Anna, A.S. Schlachter, C.P. Ballance, B.M. McLaughlin, Valence-shell photoionization of chlorinelike Ar\(^{+}\) ions. Phys. Rev. A 84, 013413 (2011)

    Article  Google Scholar 

  24. C. Blancard et al., L-shell photoionization of Ar\(^+\) to Ar\(^{3+}\) ions. Phys. Rev. A 85, 043408 (2012)

    Article  Google Scholar 

  25. N.B. Tyndall, C.A. Ramsbottom, C.P. Ballance, A. Hibbert, Valence and L-shell photoionization of Cl-like argon using R-matrix techniques. Mon. Not. Roy. Astro. Soc. (MNRAS) 456, 366 (2016)

    Article  Google Scholar 

  26. V. Fivet, M.A. Bautista, C.P. Ballance, Fine-structure photoionization cross sections of Fe II. J. Phys. B: At. Mol. Opt. Phys. 45, 035201 (2012)

    Article  Google Scholar 

  27. A. Müller, S. Schippers, D. Esteves-Macaluso, M. Habibi, A. Aguilar, A.L.D. Kilcoyne, R.A. Phaneuf, C.P. Ballance, B.M. McLaughlin, High resolution valence shell photoionization of Ag-like (Xe\(^{7+}\)) Xenon ions: experiment and theory. J. Phys. B: At. Mol. Opt. Phys. 47, 215202 (2014)

    Article  Google Scholar 

  28. G. Hinojosa, A.M. Covington, G.A. Alna’Washi, M. Lu, R.A. Phaneuf, M.M. Sant’Anna, C. Cisneros, I. Álvarez, A. Aguilar, A.L.D. Kilcoyne, A.S. Schlachter, C.P. Ballance, B.M. McLaughlin, Valence-shell single photoionization of Kr\(^+\) ions: experiment and theory. Phys. Rev. A 86, 063402 (2012)

    Article  Google Scholar 

  29. D.A. Macaluso, A. Aguilar, A.L.D. Kilcoyne, E.C. Red, R.C. Bilodeau, R.A. Phaneuf, N.C. Sterling, B.M. McLaughlin, Absolute single-photoionization cross sections of Se\(^{2+}\): experiment and theory. Phys. Rev. A 92, 063424 (2015)

    Article  Google Scholar 

  30. M. Barthel, R. Flesch, E. Rühl, B.M. McLaughlin, Photoionization of the \(3s^23p^4\;{^{3}\text{ P }}\) and the \(3s^23p^4\;{^{1}\text{ D }, ^{1}\text{ S }}\) states of sulfur: experiment and theory. Phys. Rev. A 91, 013406 (2015)

    Article  Google Scholar 

  31. E.T. Kennedy, J.-P. Mosnier, P. Van Kampen, D. Cubaynes, S. Guilbaud, C. Blancard, B.M. McLaughlin, J.-M. Bizau, Photoionization cross sections of the aluminumlike Si\(^+\) ion in the region of the \(2p\) threshold (94–137 eV). Phys. Rev. A 90, 063409 (2014)

    Article  Google Scholar 

  32. A. Müller, Precision studies of deep-inner-shell photoabsorption by atomic ions. Phys. Scr. 90, 054004 (2015)

    Article  Google Scholar 

  33. A. Müller, S. Schippers, J. Hellhund, A.L.D. Kilcoyne, R.A. Phaneuf, C.P. Ballance, B.M. McLaughlin, Single and multiple photoionization of W\(^{q+}\) tungsten ions in charged states \(q =\) 1, 2, 5: experiment and theory. J. Phys. Conf. Ser. 488, 022032 (2014)

    Article  Google Scholar 

  34. A. Müller, S. Schippers, J. Hellhund, K. Holosto, A.L.D. Kilcoyne, R.A. Phaneuf, C.P. Ballance, B.M. McLaughlin, Single-photon single ionization of W\(^+\) ions: experiment and theory. J. Phys. B: At. Mol. Opt. Phys. 48, 2352033 (2015)

    Google Scholar 

  35. B.M. McLaughlin, C.P. Ballance, S. Schippers, J. Hellhund, A.L.D. Kilcoyne, R.A. Phaneuf, A. Müller, Photoionization of tungsten ions: experiment and theory for W\(^{2+}\) and W\(^{3+}\). J. Phys. B: At. Mol. Opt. Phys. 49, 065201 (2016)

    Article  Google Scholar 

  36. A. Müller, S. Schippers, J. Hellhund, A.L.D. Kilcoyne, R.A. Phaneuf, B.M. McLaughlin, Photoionization of tungsten ions: experiment and theory for W\(^{4+}\). J. Phys. B: At. Mol. Opt. Phys. 50, 085007 (2017)

    Article  Google Scholar 

  37. B. Peart, I.C. Lyon, K. Dolder, Measurements of absolute photoionisation cross sections of Ga\(^+\) and Zn\(^+\)ions. J. Phys. B: At. Mol. Phys. 21 225701 (1987)

    Google Scholar 

  38. G. Hinojosa, V.T. Davis, A.M. Covington, J.S. Thompson, A.L.D. Kilcoyne, A. Antillón, E.M. Hernández, D. Calabrese, A. Morales-Mori, A.M. Juárez, O. Windelius, B.M. McLaughlin, Single-Photoionization of the Zn II ion in the photon energy range 17.5–90 eV: experiment and theory. Mon. Not. Roy. Astro. Soc. (MNRAS) 470, 4048 (2017)

    Article  Google Scholar 

  39. D. Nishijima, R.P. Doerner, D.G. Whyte, M.J. Baldwin, T. Schwarz-Selinger, Measurements of Mo I S/XB values. J. Phys. B: At. Mol. Opt. Phys. 43, 225701 (2010)

    Article  Google Scholar 

  40. N.R. Badnell, T.W. Gorczyca, M.S. Pindzola, H.P. Summers, Excitation and ionization of neutral Cr and Mo, and the application to impurity flux. J. Phys. B: At. Mol. Opt. Phys. 29, 3683 (1996)

    Article  Google Scholar 

  41. K. Bartschat, A. Dasgupta, J. Giuliani, Electron-impact excitation of molybdenum from the (\(4d^55s\))\(a^7S\) ground state. J. Phys. B: At. Mol. Opt. Phys. 35, 2899 (2002)

    Article  Google Scholar 

  42. G.J. Hartwell, S.F. Knowlton, J.D. Hanson, D.A. Ennis, D.A. Maurer, Design, construction, and operation of the compact toroidal hybrid. Fusion Sci. Technol. 72, 76 (2017)

    Article  Google Scholar 

  43. R.T. Smyth, C.A. Johnson, D.A. Ennis, S.D. Loch, C.A. Ramsbottom, C.P. Ballance, Relativistic R-matrix calculations for the electron-impact excitation of neutral molybdenum. Phys. Rev. A 96, 042713 (2017)

    Article  Google Scholar 

  44. M.S. Pindzola et al., The time-dependent close-coupling method for atomic and molecular collision processes. J. Phys. B: At. Mol. Opt. Phys. 40, R39 (2007)

    Article  Google Scholar 

  45. M.S. Pindzola, J.P. Colgan, B.M. McLaughlin, Electron-impact double ionization of the H\(_2\) molecule. J. Phys. B: At. Mol. Opt. Phys. 51, 035206 (2018)

    Article  Google Scholar 

  46. M.S. Pindzola, M. Folge, P.C. Stancil, Line ratios for x-ray emission in O\(^{8+}\) collisions with H and He atoms. J. Phys. B: At. Mol. Opt. Phys. 51, 065204 (2018)

    Article  Google Scholar 

  47. F.D. Priestly, M.J. Barlow, S. Viti, Modelling the ArH\(^{+}\) emission from the Crab nebula. Mon. Not. Roy. Astro. Soc. (MNRAS) 472, 4444 (2017)

    Google Scholar 

  48. P. Schilke, D.A. Neufeld, H.S.P. Müller, C. Comito, E.A. Bergin, D.C. Lis, M. Gerin, J.H. Black, M. Wolfire, N. Indriolo, J.C. Pearson, K.M. Menten, B. Winkel, Á. Sánchez-Monge, T. Möller, B. Godard, E. Falgarone, Ubiquitous argonium (ArH\(^+\)) in the diffuse interstellar medium: a molecular tracer of almost purely atomic gas. Astron. Astrophys. 566, A29 (2014)

    Article  Google Scholar 

  49. Smith, F.T., Fleischmann, H.H., Young, R.A. (1970) Collision Spectroscopy. III. Scattering in Low-Energy Charge-Transfer Collisions of He\(^+\) and Ar. Phys. Rev. A 2, 379 (1970)

    Article  Google Scholar 

  50. R.C. Isler, Inelastic collisions of He\(^+\) and Ar. Phys. Rev. A 10, 117 (1974)

    Article  Google Scholar 

  51. R. Albat, B. Wisram, A four-state calculation of charge exchange in He\(^+\)—Ar collisions using a quasimolecule model. J. Phys. B: At. Mol. Phys. 10, 81 (1977)

    Article  Google Scholar 

  52. R. Johnsen, M.T. Leu, M. Biondi, Studies of nonresonant charge transfer between atomic ions and atoms. Phys. Rev. A 8, 1808 (1973)

    Article  Google Scholar 

  53. J.D.C. Jones, D.G. Lister, N.D. Twiddy, Charge-transfer reaction rate coefficients for He\(^+\) and Ne\(^+\) with Ar at 300 K. J. Phys. B: At. Mol. Phys. 12, 2723 (1979)

    Article  Google Scholar 

  54. F.C. Fehsenfeld, A.L. Schmeltekopf, P.D. Goldan, H.I. Schiff, E.E. Ferguson, Thermal  Energy Ion–Neutral Reaction Rates. I. Some Reactions of Helium Ions. J. Chem. Phys. 44, 4087 (1966)

    Article  Google Scholar 

  55. J.F. Babb, B.M. McLaughlin, Radiative charge transfer between \(\text{He}^{+}\) and \(\text{Ar}\). Astrophys. J. 860, 151 (2018)

    Google Scholar 

  56. T. Helgaker, P. Jorgesen, J. Oslen, Molecular electronic-structure theory (Wiley, New York, 2000)

    Book  Google Scholar 

  57. S. Langhoff, E.R. Davidson, Configuration interaction calculations on the nitrogen molecule. Int. J. Quantum Chem. 8, 61 (1974)

    Article  Google Scholar 

  58. B. Zygelman, A. Dalgarno, M. Kimura, N.F. Lane, Radiative and nonradiative charge transfer in He\(^{+}\) + H collisions at low energy. Phys. Rev. A 40, 2340 (1989)

    Article  Google Scholar 

  59. B.M. McLaughlin, H.L.D. Lamb, I.C. Lane, J.F. McCann, Ultracold radiative charge transfer in hybrid Yb ion—Rb atom traps. J. Phys. B: At. Mol. Opt. Phys. 47, 145201 (2014)

    Article  Google Scholar 

  60. J.F. Babb, B.M. McLaughlin, Radiative charge transfer in collisions of C with He\(^+\). J. Phys. B: At. Mol. Opt. Phys. 50, 044003 (2017)

    Article  Google Scholar 

  61. P.C. Stancil, B. Zygelman, Radiative charge transfer in collisions of Li with H\(^+\). Astrophys. J. 472, 102 (1996)

    Article  Google Scholar 

  62. X.J. Liu, Y.Z. Qu, B.J. **ao, C.H. Liu, Y. Zhou, J.G. Wang, R.J. Buenker, Radiative charge transfer and radiative association in He\(^{+}\) + Ne collisions. Phys. Rev. A 81, 022717 (2010)

    Article  Google Scholar 

  63. D.A. Neufeld, M.G. Wolfire, The chemistry of interstellar argonium and other probes of the molecular fraction in diffuse clouds. Astrophys. J. 826, 183 (2016)

    Article  Google Scholar 

  64. J. Le Bourlot, F. Le Petit, C. Pinto, E. Roueff, F. Roy, Surface chemistry in the interstellar medium. Astron. Astrophys. 541, A76 (2012)

    Article  Google Scholar 

  65. M. Cairne, R.C. Forrey, J.F. Babb, P.C. Stancil, B.M. McLaughlin, Rate constants for the formation of SiO via radiative association. Mon. Not. Roy. Astro. Soc. (MNRAS) 471 2481 (2017)

    Google Scholar 

  66. C.W. Bauschlicher Jr., Low-lying electronic states of SiO. Chem. Phys. Letts. 658, 76 (2016)

    Article  Google Scholar 

  67. S. Marassi, R. Schneider, M. Limongi, A. Chieffi, M. Bocchio, S. Bianchi, The metal and dust yields of the first massive stars. Mon. Not. Roy. Astro. Soc (MNRAS) 454, 4250 (2015)

    Article  Google Scholar 

  68. A.N. Heays, A.D. Bosman, E.F. van Dishoeck, Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 602, A105 (2017)

    Article  Google Scholar 

  69. van E.F. Dishoeck, in Rate Coefficients in Astrochemistry, ed. by T.J. Millar, D.A. Williams. vol. 49 (Kluwer Academic Publishers, Dordrecht, Boston, MA, 1988)

    Google Scholar 

  70. R.J. Patillo, R. Cieszewsk, P.C. Stancil, R.C. Forrey, J.F. Babb, J.F. McCann, B.M. McLaughlin, Photodissociation of CS from excited rovibrational levels. Astrophys. J. 858, 10 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

A Müller acknowledges support by Deutsche Forschungsgemeinschaft under project number Mu-1068/20. B. M. McLaughlin acknowledges support from the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, a visiting professorship from the University of Georgia at Athens, and a visiting research fellowship (VRF) from Queen’s University Belfast. ITAMP is supported in part by a grant from the NSF to the Smithsonian Astrophysical Observatory and Harvard University. M. S. Pindzola acknowledges support by NSF and NASA grants through Auburn University. P. C. Stancil acknowledges support from NASA grants through University of Georgia at Athens. This research used computational resources at the National Energy Research Scientific Computing Center (nersc) in Berkeley, CA, USA, and at the High Performance Computing Center Stuttgart (hlrs) of the University of Stuttgart, Stuttgart, Germany. The Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, provided additional computational resources, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McLaughlin, B.M. et al. (2019). PAMOP2: Towards Exascale Computations Supporting Experiments and Astrophysics. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13325-2_3

Download citation

Publish with us

Policies and ethics

Navigation