Flow Structures and Scale Interactions in Stable Atmospheric Boundary Layer Turbulence

  • Conference paper
  • First Online:
Turbulent Cascades II

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

  • 570 Accesses

Abstract

Atmospheric boundary layer turbulence in stably stratified conditions is characterised by an intermittent, unsteady behaviour. The intermittency can result from localised flow acceleration due to non-turbulent motions, which can exhibit structures such as ramp-cliff convective patterns, waves or microfronts. Based on a timeseries clustering method, we characterise interactions between scales of motion in a dataset of near-surface stable boundary layer turbulence. Individual flow structures are investigated in two weak-wind flow regimes exhibiting distinct scale interaction properties. The signature of flow structures differs despite comparable wind and stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansorge, C., Mellado, J.P.: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteorol. 153(1), 89–116 (2014)

    Article  Google Scholar 

  2. Ansorge, C., Mellado, J.P.: Analyses of external and global intermittency in the logarithmic layer of Ekman flow. J. Fluid Mech. 805, 611–635 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bou-Zeid, E., Higgins, C.W., Huwald, H., Meneveau, C., Parlange, M.: Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech. 665, 480–515 (2010)

    Article  Google Scholar 

  4. Faranda, D., Pons, F.M.E., Dubrulle, B., Daviaud, F., Saint-Michel, B., Herbert, É., Cortet, P.-P.: Modelling and analysis of turbulent datasets using ARMA processes. Phys. Fluids (1994-present) 26(10), 105101 (2014)

    Article  Google Scholar 

  5. Horenko, I.: On the identification of nonstationary factor models and their application to atmospheric data analysis. J. Atmos. Sci. 67(5), 1559–1574 (2010)

    Article  Google Scholar 

  6. Kang, Y., Belušić, D., Smith-Miles, K.: Detecting and classifying events in noisy time series. J. Atmos. Sci. 71(3), 1090–1104 (2014)

    Article  Google Scholar 

  7. Kang, Y., Belušić, D., Smith-Miles, K.: Classes of structures in the stable atmospheric boundary layer. Q. J. R. Meteorol. Soc. 141(691), 2057–2069 (2015)

    Article  Google Scholar 

  8. Mahrt, L.: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 23–45 (2014)

    Article  MathSciNet  Google Scholar 

  9. Nevo, G., Vercauteren, N., Kaiser, A., Dubrulle, B., Faranda, D.: Statistical-mechanical approach to study the hydrodynamic stability of the stably stratified atmospheric boundary layer. Phys. Rev. Fluids 2(8), 084603 (2017)

    Article  Google Scholar 

  10. Nilsson, E.O., Sahlée, E., Rutgersson, A.: Turbulent momentum flux characterization using extended multiresolution analysis. Q. J. R. Meteorol. Soc. 140, 1715–1728 (2014)

    Article  Google Scholar 

  11. Thomson, D.J.: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180(1), 529–556 (1987)

    Article  Google Scholar 

  12. Vercauteren, N., Klein, R.: A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer. J. Atmos. Sci. 72(4), 1504–1517 (2015)

    Article  Google Scholar 

  13. Vercauteren, N., Mahrt, L., Klein, R.: Investigation of interactions between scales of motion in the stable boundary layer. Q. J. R. Meteorol. Soc. 142(699), 2424–2433 (2016)

    Article  Google Scholar 

  14. Vickers, D., Mahrt, L.: The cospectral gap and turbulent flux calculations. J. Atmos. Ocean. Technol. 20(5), 660–672 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Deutsche Forschungsgemeinschaft (DFG) through grant number VE 933/2-1, and through the CRC1114 “Scaling Cascades in Complex Systems”, project B07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Vercauteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vercauteren, N., Belušić, D. (2019). Flow Structures and Scale Interactions in Stable Atmospheric Boundary Layer Turbulence. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation