Differential Geometry of Quantum States, Observables and Evolution

  • Chapter
  • First Online:
Quantum Physics and Geometry

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 25))

Abstract

The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of systems are analysed from this perspective, the relevant geometrical structures and their associated algebraic properties are highlighted, and the Qubit example is thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathscr {H}_{0}\) denotes the Hilbert space \(\mathscr {H}\) with the zero vector removed.

References

  1. R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 3rd edn. (Springer, New York, 2012)

    MATH  Google Scholar 

  2. A. Ashtekar, T.A. Schilling. Geometrical formulation of quantum mechanics, in On Einstein’s Path: Essays in Honor of Engelbert Schucking (Springer, New York, 1999), p. 42

    Google Scholar 

  3. S. Bochner, Curvature in Hermitian metric. Bull. Am. Math. Soc. 52, 177–195 (1947)

    MathSciNet  MATH  Google Scholar 

  4. M. Born, P. Jordan, Zur Quantenmechanik. Z. Phys. 34(1), 858 (1925); M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik. II. Z. Phys. 35(8–9), 557 (1926)

    Google Scholar 

  5. F.M. Ciaglia, F. Di Cosmo, A. Ibort, G. Marmo, Dynamical aspects in the quantizer-dequantizer formalism. Ann. Phys. 385, 769–781 (2017)

    Article  MathSciNet  Google Scholar 

  6. F.M. Ciaglia, F. Di Cosmo, A. Ibort, M. Laudato, G. Marmo, Dynamical vector fields on the manifold of quantum states. Open. Syst. Inf. Dyn. 24(3), 1740003, 38 pp. (2017)

    Google Scholar 

  7. F.M. Ciaglia, F. Di Cosmo, M. Laudato, G. Marmo, Differential calculus on manifolds with boundary: applications. Int. J. Geom. Meth. Mod. Phys. 4(8), 1740003, 39 pp. (2017)

    Google Scholar 

  8. R. Cirelli, A. Manià, L. Pizzocchero, Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: part I. J. Math. Phys. 31, 2891–2897 (1990); ibid., Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: part II. J. Math. Phys. 31, 2898–2903 (1990)

    Google Scholar 

  9. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994)

    MATH  Google Scholar 

  10. P.A.M. Dirac, The Principles of Quantum Mechanics, No. 27 (Oxford University Press, London, 1981)

    Google Scholar 

  11. E. Ercolessi, G. Marmo, G. Morandi, From the equations of motion to the canonical commutation relations. Riv. Nuovo Cimento Soc. Ital. Fis. 33, 401–590 (2010)

    Google Scholar 

  12. G. Esposito, G. Marmo, G. Sudarshan, From Classical to Quantum Mechanics (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  13. P. Facchi, R. Kulkarni, V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Ventriglia, Classical and quantum Fisher information in the geometrical formulation of quantum mechanics. Phys. Lett. A 374(48), 4801–4803 (2010)

    Article  MathSciNet  Google Scholar 

  14. F. Falceto, L. Ferro, A. Ibort, G. Marmo, Reduction of Lie-Jordan Banach algebras and quantum states. J. Phys. A Math. Theor. 46(1), 015201 (2012)

    Google Scholar 

  15. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  MathSciNet  Google Scholar 

  16. J. Grabowski, M. Kuś, G. Marmo, Geometry of quantum systems: density states and entanglement. J. Phys. A Math. Gen. 38(47), 10217–10244 (2005)

    Article  MathSciNet  Google Scholar 

  17. N.S. Hawley, Constant holomorphic curvature. Canad. J. Math. 5, 53–56 (1953)

    Article  MathSciNet  Google Scholar 

  18. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79(6), 065013 (2009)

    Google Scholar 

  19. J. Igusa, On the structure of certain class of Kähler manifolds. Am. J. Math. 76, 669–678 (1954)

    Article  Google Scholar 

  20. P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35(1), 29–64 (1934)

    Article  MathSciNet  Google Scholar 

  21. T.W.B. Kibble, Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  22. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol II (Wiley, New York, 1969)

    MATH  Google Scholar 

  23. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  MathSciNet  Google Scholar 

  24. G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo, C. Rubano, The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys. Rept. 188, 147–284 (1990)

    Article  MathSciNet  Google Scholar 

  25. L. Nirenberg, A. Newlander, Complex analytic coordinates in almost complex manifolds. Ann. Math. 65(3), 391–404 (1957)

    Article  MathSciNet  Google Scholar 

  26. M. Skulimowski, Geometric POV-measures, pseudo-Kählerian functions and time, in Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebanski, Proceedings of the 2002 International Conference, Cinvestav Mexico City, 17–20 September 2002 (World Scientific, Hackensack, 2006), p. 433

    Google Scholar 

  27. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  28. H. Weyl, Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1–46 (1927)

    Article  Google Scholar 

  29. A. Wintner, The unboundedness of quantum-mechanical matrices. Phys. Rev. 71(10), 738 (1947)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in RD (SEV-2015/0554). AI would like to thank partial support provided by the MINECO research project MTM2017-84098-P and QUITEMAD+, S2013/ICE-2801. GM would like to thank the support provided by the Santander/UC3M Excellence Chair Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ibort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciaglia, F.M., Ibort, A., Marmo, G. (2019). Differential Geometry of Quantum States, Observables and Evolution. In: Ballico, E., Bernardi, A., Carusotto, I., Mazzucchi, S., Moretti, V. (eds) Quantum Physics and Geometry. Lecture Notes of the Unione Matematica Italiana, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-06122-7_7

Download citation

Publish with us

Policies and ethics

Navigation