Observations and Models of Low-Mode Internal Waves in the Ocean

  • Chapter
  • First Online:
Energy Transfers in Atmosphere and Ocean

Part of the book series: Mathematics of Planet Earth ((MPE,volume 1))

Abstract

The generation of internal gravity waves in the ocean is largely driven by tides, winds, and interaction of currents with the seafloor. Models and observations indicate a global energy supply for the internal wave field of about 1 TW by the conversion of barotropic tides at mid-ocean ridges and abrupt topographic features. Winds acting on the oceanic mixed layer contribute 0.3–1.5 TW, and mesoscale flow over rough topography adds about 0.2 TW. Globally, 1–2 TW are needed to maintain the observed stratification of the deep ocean by diapycnal mixing that results from the breaking of internal waves. Ocean circulation models show significant impact of the spatial distribution of internal wave dissipation and mixing on the ocean state, e.g., thermal structure, stratification, and meridional overturning circulation. Observations indicate that the local ratio of generation and dissipation of internal waves is often below unity, and thus, the energy available for mixing must be redistributed by internal tides and near-inertial waves at low vertical wavenumber that can propagate thousands of kilometers from their source regions. Eddy-permitting global ocean circulation models are able to quantify the different sources of energy input and can also simulate the propagation of the lowest internal wave modes. However, the variation of the internal wave energy flux along its paths by wave–wave interaction, topographic scattering, and refraction by mesoscale features as well as its ultimate fate by dissipation remains to be parameterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 145.59
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alford, M.H.: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 30(8), 1424 (2003a)

    Article  Google Scholar 

  • Alford, M.H.: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423, 159–162 (2003b)

    Article  Google Scholar 

  • Alford, M.H., Zhao, Z.: Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J. Phys. Oceanogr. 37, 1829–1848 (2007)

    Article  MathSciNet  Google Scholar 

  • Alford, M.H., MacKinnon, J.A., Nash, J.D., Simmons, H., Pickering, A., Klymak, J.M., Pinkel, R., Sun, O., Rainville, L., Mushgrave, R., Beitzel, T., Fu, K.-H., Lu, C.-W.: Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr. 41, 2211–2222 (2011)

    Article  Google Scholar 

  • Alford, M.H., Cronin, M.F., Klymak, J.M.: Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station Papa in the Northeast Pacific. J. Phys. Oceanogr. 42, 889–909 (2012)

    Article  Google Scholar 

  • Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centuroni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., Fu, K.-H., Gallacher, P.C., Graber, H.C., Helfrich, K.R., Jachec, S.M., Jackson, C.R., Klymak, J.M., Ko, D.S., Jan, S., Johnston, T.M.S., Legg, S., Lee, I.-H., Lien, R.-C., Mercier, M.J., Moum, J.N., Musgrave, R., Park, J.-H., Pickering, A.L., Pinkel, R., Rainville, L., Ramp, S.R., Rudnick, D.L., Sarkar, S., Scotti, A., Simmons, H.L., St. Laurent, L. C., Venayagamoorthy, S. K., Wang, Y.-H., Wang, J., Yang, Y. J., Paluszkiewicz, T., Tang, T.-Y.: The formation and fate of internal waves in the South China Sea. Nature 521, 65–69 (2015)

    Google Scholar 

  • Arbic, B.K., Wallcraft, A.J., Metzger, E.J.: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Model. 32, 175–187 (2010)

    Article  Google Scholar 

  • Arbic, B.A., Scott, R.B., Chelton, D.B., Richman, J.G., Shriver, J.F.: Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data. J. Geophys. Res. 117, C03029 (2012)

    Article  Google Scholar 

  • Bell, T.: Statistical features of sea-floor topography. Deep-Sea Res. 22, 883–892 (1975a)

    Google Scholar 

  • Bell, T.: Topographically generated internal waves in the open ocean. J. Geophys. Res. 80(3), 320–327 (1975b)

    Article  Google Scholar 

  • Damerell, G.M., Heywood, K.J., Stevens, D.P., Naveira Garabato, A.C.: Temporal variability of diapycnal mixing in Shag Rocks Passage. J. Phys. Oceanogr. 42, 370–385 (2012)

    Article  Google Scholar 

  • D’Asaro, E.A., Eriksen, C.C., Levine, M.D., Niiler, P., Paulson, C.A., Meurs, P.V.: Upper-ocean inertial currents forced by a strong storm. Part I: data and comparision with linear theory. J. Phys. Oceanogr. 25, 2909–2936 (1995)

    Article  Google Scholar 

  • Dushaw, B.: An empirical model for mode-1 internal tides derived from satellite altimetry: computing accurate tidal predictions at arbitrary points over the world oceans. Technical. Memorandum 1–15, APL-UW (2015)

    Google Scholar 

  • Dushaw, B.D., Worcester, P.F., Dzieciuch, M.A.: On the predictability of mode-1 internal tides. Deep-Sea Res. I(58), 677–698 (2011)

    Article  Google Scholar 

  • Eden, C., Czeschel, L., Olbers, D.: Toward energetically consistend ocean models. J. Phys. Oceanogr. 44, 3160–3184 (2014)

    Article  Google Scholar 

  • Eden, C., Olbers, D.: An energy compartment model for propagation, non-linear interaction and dissipation of internal gravity waves. J. Phys. Oceanogr. 44, 2093–2106 (2014)

    Article  Google Scholar 

  • Egbert, G., Erofeeva, S.: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002)

    Article  Google Scholar 

  • Egbert, G.D., Ray, R.D.: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775–778 (2000)

    Article  Google Scholar 

  • Exarchou, E., von Storch, J.-S., Jungclaus, J.H.: Impact of tidal mixing with different scales of bottom roughness on the general circulation. Ocean Dyn. 62, 1545–1563 (2012)

    Article  Google Scholar 

  • Exarchou, E., von Storch, J.-S., Jungclaus, J.H.: Sensitivity of transient climate change to tidal mixing: southern ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM. Clim. Dyn. 42, 1755–1773 (2014)

    Article  Google Scholar 

  • Frants, M., Damerell, G.M., Gille, S.T., Heywood, K.J., MacKinnon, J., Sprintall, J.: An assessment of density-based finescale methods for estimating diapycnal diffusivity in the Southern Ocean. J. Atmos. Ocean. Technol. 30, 2647–2661 (2013)

    Article  Google Scholar 

  • Furuichi, N., Hibiya, T., Niwa, Y.: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res. 113, C09034 (2008)

    Article  Google Scholar 

  • Gregg, M.C.: Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94(C7), 9686–9698 (1989)

    Article  Google Scholar 

  • Gregg, M.C., Sanford, T.B., Winkel, D.P.: Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422, 513–515 (2003)

    Article  Google Scholar 

  • Gustafsson, K.E.: Computations of the energy flux to mixing processes via baroclinic wave drag on barotropic tides. Deep-Sea Res. I(48), 2283–2295 (2001)

    Article  Google Scholar 

  • Hallberg, R.: Stable split time step** schemes for large-scale ocean modeling. J. Comput. Sci. 135, 54–65 (1997)

    MATH  Google Scholar 

  • Hibiya, T., Nagasawa, M.: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett. 31(L01301) (2004). https://doi.org/10.1029/2003GL017998

  • Jiang, J., Lu, Y., Perrie, W.: Estimating the energy flux from the wind to ocean inertial motions: the sensitivity to surface wind fields. Geophys. Res. Lett. 32, L15610 (2005)

    Article  Google Scholar 

  • Johnston, T.M.S., Merrifield, M.A., Holloway, P.E.: Internal tide scattering at the line islands ridge. J. Geophys. Res. 108(C11), 3365 (2003)

    Article  Google Scholar 

  • Kang, D., Fringer, O.: Energetics of barotropic and baroclinic tides in the monterey bay area. J. Phys. Oceanogr. 42, 272–290 (2012)

    Article  Google Scholar 

  • Kelly, S.M., Nash, J.D., Martini, K.I., Alford, M.H., Kunze, E.: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr. 42, 1217–1232 (2012)

    Article  Google Scholar 

  • Kelly, S.M., Jones, N.L., Nash, J.D., Waterhouse, A.F.: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett. 40, 4689–4693 (2013)

    Article  Google Scholar 

  • Klymak, J.M., Pinkel, R., Rainville, L.: Direct breaking of the internal tide near topography: Kaena Ridge. Hawaii. J. Phys. Oceanogr. 38, 380–399 (2008)

    Article  Google Scholar 

  • Kunze, E., Firing, E., Hummon, J.M., Chereskin, T.K., Thurnherr, A.M.: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr. 36(8), 1553–1576 (2006)

    Article  Google Scholar 

  • Li, Z., von Storch, J.-S., Müller, M.: The M\(_2\) internal tide simulated by a 1/10\(\,^{\circ }\) OGCM. J. Phys. Oceanogr. 45, 3119–3135 (2015)

    Article  Google Scholar 

  • Llewellyn Smith, S.G., Young, W.R.: Conversion of the barotropic tide. J. Phys. Oceanogr. 32(5), 1554–1566 (2002)

    Article  MathSciNet  Google Scholar 

  • Lvov, Y.V., Polzin, K.L., Tabak, E.G., Yokoyama, N.: Oceanic internal-wave field: theory of scale-invariant spectra. J. Phys. Oceanogr. 40, 2605–2623 (2010)

    Article  Google Scholar 

  • MacKinnon, J., St. Laurent, L., Naveira Garabato, A.C.: Diapycnal mixing proceses in the ocean interior. Int. Geophys. 103, 159–183 (chapter 7). Elsevier Ltd (2013)

    Google Scholar 

  • Mater, B.D., Venayagamoorthy, S.K., St. Laurent, L., Moum, J.N.: Biases in Thorpe-scale estimates of turbulent dissipation. Part I: assesments from large-scale overturns in oceanographic data. J. Phys. Oceanogr. 45, 2497–2521 (2015)

    Article  Google Scholar 

  • McComas, C.H.: Equilibrium mechanics within the oceanic internal wave field. J. Phys. Oceanogr. 7, 836–845 (1977)

    Article  Google Scholar 

  • McComas, C.H., Bretherton, F.P.: Resonant interaction of oceanic internal waves. J. Geophys. Res. 82, 1397–1412 (1977)

    Article  Google Scholar 

  • Melet, A., Hallberg, R., Legg, S., Polzin, K.: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr. 43, 602–615 (2013)

    Article  Google Scholar 

  • Melet, A., Hallberg, R., Legg, S., Nikurashin, M.: Sensitivity of the ocean state to lee wave-driven mixing. J. Phys. Oceanogr. 44, 900–921 (2014)

    Article  Google Scholar 

  • Mellor, G.L.: User Guide for a Three-Dimensional, Primitive Equation. Numerical Ocean Model. Princeton University, Princeton, N.J (2003)

    Google Scholar 

  • Müller, M.: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Model. 72, 242–252 (2013)

    Article  Google Scholar 

  • Müller, M., Cherniawsky, J.Y., Foreman, M.G.G., von Storch, J.-S.: Global M\(_2\) internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophys. Res. Lett. 39, L19607 (2012)

    Google Scholar 

  • Munk, W., Wunsch, C.: Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I(45), 1977–2010 (1998)

    Article  Google Scholar 

  • Nash, J.D., Alford, M.H., Kunze, E.: Estimating internal wave energy fluxes in the ocean. J. Atmos. Ocean. Technol. 22, 1551–1570 (2005)

    Article  Google Scholar 

  • Nikurashin, M., Ferrari, R.: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 38, L08610 (2011)

    Article  Google Scholar 

  • Nikurashin, M., Ferrari, R.: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 3133–3137 (2013)

    Article  Google Scholar 

  • Nycander, J.: Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110, C10028 (2005)

    Article  Google Scholar 

  • Olbers, D., Eden, C.: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr. 43, 1759–1779 (2013)

    Article  Google Scholar 

  • Olbers, D.J.: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech. 74, 375–399 (1976)

    Article  Google Scholar 

  • Pinkel, R., Rudnick, D.: Editorial: Hawaii ocean mixing experiment (HOME). J. Phys. Oceanogr. 36, 965–966 (2006)

    Article  Google Scholar 

  • Plueddemann, A.J., Farrar, J.T.: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. I(53), 5–30 (2006)

    Google Scholar 

  • Pollard, R.T., Millard Jr., R.C.: Comparision between observed and simulated wind-generated intertial oscillations. Deep-Sea Res. 17, 813–821 (1970)

    Google Scholar 

  • Polzin, K.L., Lvov, Y.V.: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49, RG4003 (2011)

    Google Scholar 

  • Polzin, K.L., Naveira Garabato, A.C., Huussen, T.N., Sloyan, B.M., Waterman, S.: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. 119, 1383–1419 (2014)

    Article  Google Scholar 

  • Ray, R.D., Zaron, E.D.: M\(_2\) internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr. 46, 3–22 (2016)

    Article  Google Scholar 

  • Rimac, A., von Storch, J.-S., Eden, C., Haak, H.: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett. 40, 4882–4886 (2013)

    Article  Google Scholar 

  • Rimac, A., von Storch, J.-S., Eden, C.: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr. 46, 1885–1900 (2016)

    Article  Google Scholar 

  • Simmons, H.L., Alford, M.H.: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography 25, 30–41 (2012)

    Article  Google Scholar 

  • Simmons, H.L., Hallberg, R.W., Arbic, B.K.: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II(51), 3043–3068 (2004)

    Google Scholar 

  • Sjöberg, B., Stigebrandt, A.: Computation of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Deep-Sea Res. I(39), 269–291 (1992)

    Article  Google Scholar 

  • St. Laurent, L.C., Simmons, H.L., Jayne, S.R.: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 23(2106) (2002). https://doi.org/10.1029/2002GL015633

    Article  Google Scholar 

  • Thorpe, S.A.: Turbulence and mixing in a scottish loch. Phil. Trans. R. Soc. Lond. 286(1334), 125–181 (1977)

    Article  Google Scholar 

  • Tian, J., Zhou, L., Zhang, X.: Latitudinal distribution of mixing rate caused by the m\(_2\) internal tide. J. Phys. Oceanogr. 36, 35–42 (2006)

    Article  Google Scholar 

  • Walter, M., Mertens, C.: Mid-depth mixing linked to North Atlantic current variability. Geophys. Res. Lett. 40, 4869–4875 (2013)

    Article  Google Scholar 

  • Walter, M., Mertens, C., Rhein, M.: Mixing estimates from a large-scale hydrographic survey in the North Atlantic. Geophys. Res. Lett. 32, L13605 (2005)

    Article  Google Scholar 

  • Watanabe, M., Hibiya, T.: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett. 29(8), 1239 (2002)

    Article  Google Scholar 

  • Waterhouse, A.F., MacKinnon, J.A., Nash, J.D., Alford, M.H., Kunze, E., Simmons, H.L., Polzin, K.L., St. Laurent, L., Sun, O.M., Pinkel, R., Talley, L.D., Whalen, C.B., Huussen, T.N., Carter, G.S., Fer, I., Waterman, S., Naveira Garabato, A.C., Sanford, T.B., Lee, C.M.: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44, 1854–1872 (2014)

    Article  Google Scholar 

  • Waterman, S., Naveira Garabato, A.C., Polzin, K.L.: Internal waves and turbulence in the Antarctic circumpolar current. J. Phys. Oceanogr. 43, 259–282 (2013)

    Article  Google Scholar 

  • Whalen, C.B., Talley, L.D., MacKinnon, J.A.: Spatial and temporal variability of global ocean mixing inferred from argo profiles. Geophys. Res. Lett. 39, L18612 (2012)

    Article  Google Scholar 

  • Wunsch, C.: Internal tides in the ocean. Rev. Geophys. Space Phys. 13, 167–1982 (1975)

    Article  Google Scholar 

  • Wunsch, C., Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004)

    Article  MathSciNet  Google Scholar 

  • Zhao, Z., Alford, M.H.: New altimetric estimates of mode-1 M\(_2\) internal tides in the central north Pacific Ocean. J. Phys. Oceanogr. 39, 1669–1684 (2009)

    Article  Google Scholar 

  • Zhao, Z., Alford, M.H., MacKinnon, J.A., Pinkel, R.: Long-range propagation of the semidiurnal tide from the Hawaiian Ridge. J. Phys. Oceanogr. 40, 713–736 (2010)

    Article  Google Scholar 

  • Zhao, Z., Alford, M.H., Girton, J., Johnston, T.M.S., Carter, G.: Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J. Geophys. Res. 116, C12039 (2011)

    Article  Google Scholar 

  • Zhao, Z., Alford, M.H., Girton, J.B., Rainville, L., Simmons, H.L.: Global observations of open-ocean mode-1 M\(_2\) internal tides. J. Phys. Oceanogr. 46, 1657–1684 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brian Dushaw (Univ. Washington) for providing estimates of mode 1 internal tides from altimetry and Carsten Eden (Univ. Hamburg) for the energy fluxes from IDEMIX. Janna Köhler received funding from the Deutsche Forschungsgemeinschaft (DFG, grant Ko4814/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mertens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mertens, C., Köhler, J., Walter, M., von Storch, JS., Rhein, M. (2019). Observations and Models of Low-Mode Internal Waves in the Ocean. In: Eden, C., Iske, A. (eds) Energy Transfers in Atmosphere and Ocean. Mathematics of Planet Earth, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-05704-6_4

Download citation

Publish with us

Policies and ethics

Navigation