Passive Approximation with High-Order B-Splines

  • Conference paper
  • First Online:
Analysis, Probability, Applications, and Computation

Part of the book series: Trends in Mathematics ((RESPERSP))

  • 589 Accesses

Abstract

Convex optimization has emerged as a well-suited tool for passive approximation. Here, it is desired to approximate some pre-defined non-trivial system response over a given finite frequency band by using a passive system. This paper summarizes some explicit results concerning the Hilbert transform of general B-splines of arbitrary order and arbitrary partitions that can be useful with the convex optimization formulation. A numerical example in power engineering is included concerning the identification of some model parameters based on measurements on high-voltage insulation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N.I. Akhiezer, The Classical Moment Problem (Oliver and Boyd, Edinburgh, 1965)

    MATH  Google Scholar 

  2. F. Alvarez, A. Alegra, J. Colmenero, Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys. Rev. B 44, 7306–7312 (1991)

    Article  Google Scholar 

  3. E.J. Beltrami, M.R. Wohlers, Distributions and the Boundary Values of Analytic Functions (Academic, New York, 1966)

    MATH  Google Scholar 

  4. A. Bernland, A. Luger, M. Gustafsson, Sum rules and constraints on passive systems. J. Phys. A Math. Theor. 44(14), 145–205 (2011)

    MathSciNet  MATH  Google Scholar 

  5. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  6. C. de Boor, On calculating with B-splines. J. Approx. Theory 6(1), 50–62 (1972)

    Article  MathSciNet  Google Scholar 

  7. U. Gafvert, L. Adeen, M. Tapper, P. Ghasemi, B. Jonsson, Dielectric spectroscopy in time and frequency domain applied to diagnostics of power transformers, in Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No.00CH36347), vol. 2 (2000), pp. 825–830

    Google Scholar 

  8. F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions. Math. Nachr. 218(1), 61–138 (2000)

    Article  MathSciNet  Google Scholar 

  9. H. Ghorbani, M. Saltzer, F. Abid, H. Edin, Effect of heat-treatment and sample preparation on physical properties of XLPE DC cable insulation material. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2508–2516 (2016)

    Article  Google Scholar 

  10. M. Grant, S. Boyd, CVX: a system for disciplined convex programming, release 2.0, Ⓒ2012 CVX Research, Inc., Austin, TX

    Google Scholar 

  11. M. Gustafsson, D. Sjöberg, Sum rules and physical bounds on passive metamaterials. New J. Phys. 12, 043046 (2010)

    Article  Google Scholar 

  12. M. Gustafsson, D. Sjöberg, Physical bounds and sum rules for high-impedance surfaces. IEEE Trans. Antennas Propag. 59(6), 2196–2204 (2011)

    Article  Google Scholar 

  13. M. Gustafsson, M. Cismasu, S. Nordebo, Absorption efficiency and physical bounds on antennas. Int. J. Antennas Propag. 2010 (Article ID 946746), 1–7 (2010)

    Article  Google Scholar 

  14. S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)

    Article  Google Scholar 

  15. Y. Ivanenko, S. Nordebo, Approximation of dielectric spectroscopy data with Herglotz functions on the real line and convex optimization, in 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), September 2016, pp. 863–866

    Google Scholar 

  16. Y. Ivanenko, M. Gustafsson, B. Jonsson, A. Luger, B. Nilsson, S. Nordebo, J. Toft, Passive approximation and optimization using B-splines (2017). Preprint. ar**v:1711.07937

    Google Scholar 

  17. I.S. Kac, M.G. Krein, R-functions - Analytic functions map** the upper halfplane into itself. Am. Math. Soc. Transl. 103(2), 1–18 (1974)

    MATH  Google Scholar 

  18. R. Kress, Linear Integral Equations, 2nd edn. (Springer, Berlin, 1999)

    Book  Google Scholar 

  19. S. Nordebo, M. Gustafsson, B. Nilsson, D. Sjöberg, Optimal realizations of passive structures. IEEE Trans. Antennas Propag. 62(9), 4686–4694 (2014)

    Article  Google Scholar 

  20. S. Nordebo, M. Dalarsson, Y. Ivanenko, D. Sjöberg, R. Bayford, On the physical limitations for radio frequency absorption in gold nanoparticle suspensions. J. Phys. D Appl. Phys. 50(15), 3 (2017)

    Article  Google Scholar 

  21. H.M. Nussenzveig, Causality and Dispersion Relations (Academic, London, 1972)

    Google Scholar 

  22. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000)

    Article  Google Scholar 

  23. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  24. B. Simon, Harmonic Analysis. A Comprehensive Course in Analysis, part 3 (American Mathematical Society, Providence, 2015)

    Google Scholar 

  25. C. Sohl, M. Gustafsson, G. Kristensson, Physical limitations on broadband scattering by heterogeneous obstacles. J. Phys. A Math. Theor. 40, 11165–11182 (2007)

    Article  MathSciNet  Google Scholar 

  26. I. Vakili, M. Gustafsson, D. Sjöberg, R. Seviour, M. Nilsson, S. Nordebo, Sum rules for parallel-plate waveguides: experimental results and theory. IEEE Trans. Microw. Theory Tech. 62(11), 2574–2582 (2014)

    Article  Google Scholar 

  27. A.H. Zemanian, Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Foundation for Strategic Research (SSF) under the program Applied Mathematics and the project Complex analysis and convex optimization for EM design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevhen Ivanenko .

Editor information

Editors and Affiliations

Appendix

Appendix

The discontinuity behavior of linear B-splines N 0,2(x) with knot values N 0,2(x 1)=1 and N 0,2(x 0) = N 0,2(x 2) = 0 is given by

$$\displaystyle \begin{gathered} N_{0,2}^{(1)}(x_0+)=\frac{1}{x_1-x_0}, \end{gathered} $$
(21)
$$\displaystyle \begin{gathered} N_{0,2}^{(1)}(x_1+)=-\frac{1}{x_2-x_1}. \end{gathered} $$
(22)

The discontinuity behavior of quadratic B-splines N 0,3(x) with knot values N 0,3(x 1) = (x 1 − x 0)∕(x 2 − x 0), N 0,3(x 2) = (x 3 − x 2)∕(x 3 − x 1), and N 0,3(x 0) = N 0,3(x 3) = 0 is given by

$$\displaystyle \begin{gathered} N_{0,3}^{(2)}(x_0+)=\frac{2}{(x_2-x_0)(x_1-x_0)}, \end{gathered} $$
(23)
$$\displaystyle \begin{gathered} N_{0,3}^{(2)}(x_1+)= -\frac{2}{(x_2-x_0)(x_2-x_1)}-\frac{2}{(x_3-x_1)(x_2-x_1)}, \end{gathered} $$
(24)
$$\displaystyle \begin{gathered} N_{0,3}^{(2)}(x_2+)=\frac{2}{(x_3-x_1)(x_3-x_2)}. \end{gathered} $$
(25)

The discontinuity behavior of cubic B-splines N 0,4(x) with knot values

$$\displaystyle \begin{gathered} N_{0,4}(x_1)=\frac{(x_1-x_0)^2}{(x_3-x_0)(x_2-x_0)}, \end{gathered} $$
(26)
$$\displaystyle \begin{gathered} N_{0,4}(x_2)=\frac{(x_2-x_0)(x_3-x_2)}{(x_3-x_0)(x_3-x_1)}+\frac{(x_4-x_2)(x_2-x_1)}{(x_4-x_1)(x_3-x_1)}, \end{gathered} $$
(27)
$$\displaystyle \begin{gathered} N_{0,4}(x_3)=\frac{(x_4-x_3)^2}{(x_4-x_1)(x_4-x_2)}, \end{gathered} $$
(28)

and N 0,4(x 0) = N 0,4(x 4) = 0 is given by

$$\displaystyle \begin{aligned} N_{0,4}^{(3)}(x_0+)=\frac{6}{(x_3-x_0)(x_2-x_0)(x_1-x_0)}, \end{aligned} $$
(29)
$$\displaystyle \begin{aligned} \begin{array}{rcl} N_{0,4}^{(3)}(x_1+)=-\frac{6}{(x_3-x_0)(x_2-x_0)(x_2-x_1)} \\ \qquad -\frac{6}{(x_3-x_0)(x_3-x_1)(x_2-x_1)} -\frac{6}{(x_4-x_1)(x_3-x_1)(x_2-x_1)}, \vspace{-6pt}\end{array} \end{aligned} $$
(30)
$$\displaystyle \begin{aligned} \begin{array}{rcl} N_{0,4}^{(3)}(x_2+)=\frac{6}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} \\ \qquad +\frac{6}{(x_4-x_1)(x_3-x_1)(x_3-x_2)} +\frac{6}{(x_4-x_1)(x_4-x_2)(x_3-x_2)}, \end{array} \end{aligned} $$
(31)
$$\displaystyle \begin{aligned} N_{0,4}^{(3)}(x_3+)=-\frac{6}{(x_4-x_1)(x_4-x_2)(x_4-x_3)}. \end{aligned} $$
(32)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanenko, Y., Nordebo, S. (2019). Passive Approximation with High-Order B-Splines. In: Lindahl, K., Lindström, T., Rodino, L., Toft, J., Wahlberg, P. (eds) Analysis, Probability, Applications, and Computation. Trends in Mathematics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04459-6_8

Download citation

Publish with us

Policies and ethics

Navigation