Gene Replacement Therapy for Duchenne Muscular Dystrophy

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

Duchenne muscular dystrophy (DMD) is a fatal, X-linked disease caused by mutations in the massive dystrophin gene that lead to extremely low or non-detectable levels of dystrophin. Conversely, Becker muscular dystrophy (BMD) is a highly variable and significantly less severe disease that results from truncated or poorly expressed dystrophin variants. Based on the insights from BMD patient mutations and knowledge of the working domains of dystrophin, various miniaturized mini- and micro-dystrophin constructs have been developed for gene therapy and tested in preclinical animal models. Much of the central rod domain can be deleted with minimal loss of function, provided that spectrin-like repeats 16 and 17, which contain the neuronal nitric oxide synthase localization domain, are maintained. The N-terminal actin-binding domain and the C-terminal dystroglycan-binding domain (covering parts of “hinge 4” and the cysteine-rich domain) provide important functions and stability, while the function of the C-terminal domain appears redundant. While a range of viral vectors expressing these miniaturized genes have been utilized for DMD gene therapy, the recent focus has been on recombinant adeno-associated viral vectors (rAAV), which have now been tested extensively in mdx mouse and DMD dog models, and have own entered clinical trials. These vectors have shown significant improvement in the DMD pathology of mice and dogs, although complete correction has yet to be attained. Gene editing through exon-skip** oligonucleotides and CRISPR/Cas9 is also being developed, with varying success and a sense that both technologies are still in their infancy. While promising rAAV clinical trials have begun, there is still work to be done to advance the field of gene replacement for DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K (2002) Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 12(10):926–929

    Article  Google Scholar 

  2. Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695. https://doi.org/10.1016/S0140-6736(02)07815-7

    Article  CAS  PubMed  Google Scholar 

  3. Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1993) Exon structure of the human dystrophin gene. Genomics 16(2):536–538. https://doi.org/10.1006/geno.1993.1225

    Article  CAS  PubMed  Google Scholar 

  4. Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740

    Article  CAS  Google Scholar 

  5. Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53(2):219–228

    Article  CAS  Google Scholar 

  6. Corrado K, Mills PL, Chamberlain JS (1994) Deletion analysis of the dystrophin-actin binding domain. FEBS Lett 344(2–3):255–260

    Article  CAS  Google Scholar 

  7. Koenig M, Kunkel LM (1990) Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 265(8):4560–4566

    CAS  PubMed  Google Scholar 

  8. Cross RA, Stewart M, Kendrick-Jones J (1990) Structural predictions for the central domain of dystrophin. FEBS Lett 262(1):87–92

    Article  CAS  Google Scholar 

  9. Rybakova IN, Amann KJ, Ervasti JM (1996) A new model for the interaction of dystrophin with F-actin. J Cell Biol 135(3):661–672

    Article  CAS  Google Scholar 

  10. Amann KJ, Renley BA, Ervasti JM (1998) A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 273(43):28419–28423

    Article  CAS  Google Scholar 

  11. Lai Y, Zhao J, Yue Y, Duan D (2013) α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci U S A 110(2):525–530. https://doi.org/10.1073/pnas.1211431109

    Article  PubMed  Google Scholar 

  12. Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119(3):624–635. https://doi.org/10.1172/JCI36612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa-Sakurai M, Yoshida M, Imamura M, Davies KE, Ozawa E (2004) ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to beta-dystroglycan. Hum Mol Genet 13(7):693–702. https://doi.org/10.1093/hmg/ddh087

    Article  CAS  PubMed  Google Scholar 

  14. Blake DJ, Tinsley JM, Davies KE, Knight AE, Winder SJ, Kendrick-Jones J (1995) Coiled-coil regions in the carboxy-terminal domains of dystrophin and related proteins: potentials for protein-protein interactions. Trends Biochem Sci 20(4):133–135

    Article  CAS  Google Scholar 

  15. Sadoulet-Puccio HM, Rajala M, Kunkel LM (1997) Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 94(23):12413–12418

    Article  CAS  Google Scholar 

  16. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823

    Article  CAS  Google Scholar 

  17. Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(Pt5):1195–1208. https://doi.org/10.1113/jphysiol.2010.201921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345(6273):315–319

    Article  CAS  Google Scholar 

  19. Matsumura K, Burghes AHM, Mora M, Tome FMS, Morandi L, Cornello F, Leturcq F, Jeanpierre M, Kaplan JC, Reinert P, Fardeau M, Mendell JR, Campbell KP (1994) Immunohistochemical analysis of dystrophin-associated proteins in Becker/Duchenne muscular-dystrophy with huge in-frame deletions in the NH2-terminal and rod domains of dystrophin. J Clin Investig 93(1):99–105. https://doi.org/10.1172/jci116989

    Article  CAS  PubMed  Google Scholar 

  20. England SB, Nicholson LVB, Johnson MA, Forrest SM, Love DR, Zubrzyckagaarn EE, Bulman DE, Harris JB, Davies KE (1990) Very mild muscular-dystrophy associated with the deletion of 46-percent of dystrophin. Nature 343(6254):180–182. https://doi.org/10.1038/343180a0

    Article  CAS  PubMed  Google Scholar 

  21. Phelps SF, Hauser MA, Cole NM, Rafael JA, Hinkle RT, Faulkner JA, Chamberlain JS (1995) Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4(8):1251–1258

    Article  CAS  Google Scholar 

  22. Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA, Davies KE (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352(6338):815–818

    Article  CAS  Google Scholar 

  23. Dunckley MG, Wells DJ, Walsh FS, Dickson G (1993) Direct retroviral-mediated transfer of a dystrophin minigene into mdx mouse muscle in vivo. Hum Mol Genet 2(6):717–723

    Article  CAS  Google Scholar 

  24. Vincent N, Ragot T, Gilgenkrantz H, Couton D, Chafey P, Gregoire A, Briand P, Kaplan JC, Kahn A, Perricaudet M (1993) Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat Genet 5(2):130–134. https://doi.org/10.1038/ng1093-130

    Article  CAS  PubMed  Google Scholar 

  25. Deconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci U S A 93(8):3570–3574

    Article  CAS  Google Scholar 

  26. Yang L, Lochmuller H, Luo J, Massie B, Nalbantoglu J, Karpati G, Petrof BJ (1998) Adenovirus-mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (mdx) mice. Gene Ther 5(3):369–379

    Article  CAS  Google Scholar 

  27. Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner JA, Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 364(6439):725–729

    Article  CAS  Google Scholar 

  28. Wells DJ, Wells KE, Asante EA, Turner G, Sunada Y, Campbell KP, Walsh FS, Dickson G (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4(8):1245–1250

    Article  CAS  Google Scholar 

  29. Rafael JA, Sunada Y, Cole NM, Campbell KP, Faulkner JA, Chamberlain JS (1994) Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet 3(10):1725–1733

    Article  CAS  Google Scholar 

  30. Rafael JA, Cox GA, Corrado K, Jung D, Campbell KP, Chamberlain JS (1996) Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol 134(1):93–102

    Article  CAS  Google Scholar 

  31. Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS (2000) Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 150(6):1399–1410

    Article  CAS  Google Scholar 

  32. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8(3):253–261. https://doi.org/10.1038/nm0302-253

    Article  CAS  PubMed  Google Scholar 

  33. Corrado K, Rafael JA, Mills PL, Cole NM, Faulkner JA, Wang K, Chamberlain JS (1996) Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J Cell Biol 134(4):873–884

    Article  CAS  Google Scholar 

  34. Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F, Angelini C, Sugita H, Kunkel LM (1991) Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet 49:54–67

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang B, Li J, **ao X (2000) Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97(25):13714–13719. https://doi.org/10.1073/pnas.240335297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li CW, Galloway G, Malik V, Coley B, Clark KR, Li JA, **ao XA, Samulski J, McPhee SW, Samulski RJ, Walker CM (2010) Brief report: dystrophin immunity in Duchenne’s muscular dystrophy. New Engl J Med 363(15):1429–1437. https://doi.org/10.1056/NEJMoa1000228

    Article  CAS  PubMed  Google Scholar 

  37. Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, Malik V, Shilling C, Byrne BJ, Conlon T, Campbell KJ, Bremer WG, Taylor LE, Flanigan KM, Gastier-Foster JM, Astbury C, Kota J, Sahenk Z, Walker CM, Clark KR (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 68(5):629–638. https://doi.org/10.1002/ana.22251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JEJ, Ragni MV, Manno CS, Sommer J, Jiang HY, Pierce GF, Ertl HCJ, High KA (2007) CD8+ T-cell responses to adeno-associated virus capsid in humans. Nat Med 13(4):419–422. https://doi.org/10.1038/nm1549

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE, Allen JM, Miller AD, Chamberlain JS, Tapscott SJ (2012) Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther 20(8):1501–1507. https://doi.org/10.1038/mt.2012.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, Tapscott SJ, Storb R (2007) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15(6):1160–1166. https://doi.org/10.1038/sj.mt.6300161

    Article  CAS  PubMed  Google Scholar 

  41. Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S, Allais M, Francois V, Dutilleul M, Malerba A, Koo T, Thibaut JL, Matot B, Devaux M, Le Duff J, Deschamps JY, Barthelemy I, Blot S, Testault I, Wahbi K, Ederhy S, Martin S, Veron P, Georger C, Athanasopoulos T, Masurier C, Mingozzi F, Carlier P, Gjata B, Hogrel JY, Adjali O, Mavilio F, Voit T, Moullier P, Dickson G (2017) Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105. https://doi.org/10.1038/ncomms16105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banks GB, Judge LM, Allen JM, Chamberlain JS (2010) The polyproline site in hinge 2 influences the functional capacity of truncated dystrophins. PLoS Genet 6(5):e1000958. https://doi.org/10.1371/journal.pgen.1000958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890. https://doi.org/10.1093/hmg/ddv310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K, Yao G, Haffner B, Duan SX, Ramos J, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 6:216–230. https://doi.org/10.1016/j.omtm.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS (2019) Development of novel micro-dystrophins with enhanced functionality. Mol Ther 2019; in press

    Google Scholar 

  46. Hakim CH, Kodippili K, Jenkins G, Hsiao TY, Pan X, Lessa TB, Leach SB, Emter C, Yue Y, Zhang K, Duan S, Yao G, Schneider JS, Yang NN, Chamberlain JS, Duan D (2017) Single systemic AAV micro-dystrophin therapy ameliorates muscular dystrophy in young adult Duchenne muscular dystrophy dogs for up to two years. Paper presented at the American Society of Gene and Cell Therapy annual meeting, Washington, DC. Mol Ther 25(5S1):192. (abstract)

    Google Scholar 

  47. Birch SM, Lawlor MW, Guo L, Crudele JM, Hawkins EC, Nghiem PP, Styner MA, Struharik MJ, Brown KJ, Golebiowski D, Gonzalez JP, Morris CA, Schneider JS, Chamberlain JS, Byrne BJ, Kornegay JN (2017) A blinded, placebo-controlled systemic gene therapy efficacy study in the GRMD model of Duchenne muscular dystrophy. Paper presented at the American Society of Gene and Cell Therapy annual meeting, Washington, DC. Mol Ther 25(5S1):193. (abstract)

    Google Scholar 

  48. Ghosh A, Yue Y, Shin JH, Duan D (2009) Systemic Trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for duchenne muscular dystrophy. Hum Gene Ther 20(11):1319–1328. https://doi.org/10.1089/hum.2009.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odom GL, Gregorevic P, Allen JM, Chamberlain JS (2011) Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. Mol Ther 19(1):36–45. https://doi.org/10.1038/mt.2010.205

    Article  CAS  PubMed  Google Scholar 

  50. Lostal W, Kodippili K, Yue Y, Duan D (2014) Full-length dystrophin reconstitution with adeno-associated viral vectors. Hum Gene Ther 25(6):552–562. https://doi.org/10.1089/hum.2013.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koo T, Popplewell L, Athanasopoulos T, Dickson G (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25(2):98–108. https://doi.org/10.1089/hum.2013.164

    Article  CAS  PubMed  Google Scholar 

  52. Sweeney NP, Meng J, Patterson H, Morgan JE, McClure M (2017) Delivery of large transgene cassettes by foamy virus vector. Sci Rep 7(1):8085. https://doi.org/10.1038/s41598-017-08312-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O (2017) Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 7(1):79. https://doi.org/10.1038/s41598-017-00152-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DelloRusso C, Scott J, Hartigan-O’Connor D, Salvatori G, Barjot C, Robinson AS, Crawford RW, Brooks SV, Chamberlain JS (2002) Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99:12979–12984

    Article  CAS  Google Scholar 

  55. Le Guiner C, Montus M, Servais L, Cherel Y, Francois V, Thibaud JL, Wary C, Matot B, Larcher T, Guigand L, Dutilleul M, Domenger C, Allais M, Beuvin M, Moraux A, Le Duff J, Devaux M, Jaulin N, Guilbaud M, Latournerie V, Veron P, Boutin S, Leborgne C, Desgue D, Deschamps JY, Moullec S, Fromes Y, Vulin A, Smith RH, Laroudie N, Barnay-Toutain F, Riviere C, Bucher S, Le TH, Delaunay N, Gasmi M, Kotin RM, Bonne G, Adjali O, Masurier C, Hogrel JY, Carlier P, Moullier P, Voit T (2014) Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skip** in Duchenne patients. Mol Ther 22(11):1923–1935. https://doi.org/10.1038/mt.2014.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, **ao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  57. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. https://doi.org/10.1038/ncomms14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. El Refaey M, Xu L, Gao Y, Canan BD, Adesanya TA, Warner SC, Akagi K, Symer DE, Mohler PJ, Ma J, Janssen PM, Han R (2017) In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circ Res 121(8):923–929. https://doi.org/10.1161/CIRCRESAHA.117.310996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL (2016) Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 25(R1):R9–R17. https://doi.org/10.1093/hmg/ddv420

    Article  CAS  PubMed  Google Scholar 

  60. Bieber S, Halldorson JB, Finn E, Ahmad S, Chamberlain JS, Odom GL (2013) Extracorporeal delivery of rAAV with metabolic exchange and oxygenation. Sci Rep 3:1538. https://doi.org/10.1038/srep01538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (HL122332 and AR065139). KH was supported by a fellowship from Solid Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Chamberlain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hollinger, K., Crudele, J.M., Chamberlain, J.S. (2019). Gene Replacement Therapy for Duchenne Muscular Dystrophy. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_18

Download citation

Publish with us

Policies and ethics

Navigation