Global and Quantitative Profiling of Polyadenylated RNAs Using PAS-seq

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

mRNA alternative polyadenylation (APA) has been increasingly recognized as a widespread and evolutionarily conserved mechanism for eukaryotic gene regulation. Here we describe a method called poly(A) site sequencing that can not only map RNA polyadenylation sites on a transcriptome level but also provide quantitative information on the relative abundance of polyadenylated RNAs. This method has been successfully used for both global APA analysis and digital gene expression profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi Y (2012) Alternative polyadenylation: new insights from global analyses. RNA 18:2105–2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Flavell SW, Kim TK, Gray JM et al (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60:1022–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ji Z, Lee JY, Pan Z et al (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 106:7028–7033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ozsolak F, Kapranov P, Foissac S et al (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143:1018–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jan CH, Friedman RC, Ruby JG et al (2010) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101

    Article  PubMed Central  PubMed  Google Scholar 

  9. Shepard PJ, Choi E, Lu J et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fox-Walsh K, Davis-Turak J, Zhou Y et al (2011) A multiplex RNA-seq strategy to profile poly(A+) RNA: application to analysis of transcription response and 3′ end formation. Genomics 98:266–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fu Y, Sun Y, Li Y et al (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21:741–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhu YY, Machleder EM, Chenchik A et al (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30:892–897

    CAS  PubMed  Google Scholar 

  13. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  14. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R01 GM090056 and American Cancer Society Grant RSG-12-186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yao, C., Shi, Y. (2014). Global and Quantitative Profiling of Polyadenylated RNAs Using PAS-seq. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation