Using In Vitro Mutagenesis to Characterize Structure-Function Relationships in G Protein-Coupled Receptors

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The use of in vitro mutagenesis to characterize structure-function relationships in G protein-coupled receptors has led to the identification of specific amino acid residues that contribute to ligand binding, G protein coupling, and receptor folding. Mutagenesis is commonly used to change or mutate a DNA sequence so that one or more amino acid residues in a given G protein-coupled receptor are changed to different residues. These techniques can also be used to delete or insert one or more amino acids into a receptor and to exchange DNA sequences between homologous receptors. Of the available techniques, site-directed mutagenesis is the most widely employed, and this method can be used to change, insert, or delete specific amino acids residues in a receptor. This chapter describes a reliable PCR-based protocol for this method. We also briefly describe other mutagenesis techniques including random mutagenesis, scanning mutagenesis, deletion mutagenesis, and the construction of receptor chimeras. Important considerations for conducting and interpreting mutagenesis studies are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sawyer GW, Ehlert FJ, Shults CA (2010) A conserved motif in the membrane proximal C-terminal tail of human muscarinic m1 acetylcholine receptors affects plasma membrane expression. J Pharmacol Exp Ther 332:76–86

    Article  CAS  PubMed  Google Scholar 

  2. McCullum EO, Williams BA, Zhang J et al (2010) Random mutagenesis by error-prone PCR. In: Braman J (ed) In vitro mutagenesis protocols: third edition, Methods in molecular biology. Springer Science+Business Media, New York

    Google Scholar 

  3. Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR Methods Appl 3:S136–S140

    Article  CAS  PubMed  Google Scholar 

  4. Fujii R, Kitaoka M, Hayashi K (2004) One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res 32:e145

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chusacultanachai S, Yuthavong Y (2004) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. In: Melville SE (ed) Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  6. Schmidt C, Li B, Bloodworth L et al (2003) Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that “silence” a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J Biol Chem 278:30248–30260

    Article  CAS  PubMed  Google Scholar 

  7. Li B, Nowak NM, Kim SK et al (2005) Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J Biol Chem 280:5664–5675

    Article  CAS  PubMed  Google Scholar 

  8. Beukers MW, van Oppenraaij J, van der Hoorn PP et al (2004) Random mutagenesis of the human adenosine A2B receptor followed by growth selection in yeast. Identification of constitutively active and gain of function mutations. Mol Pharmacol 65:702–710

    Article  CAS  PubMed  Google Scholar 

  9. Erlenbach I, Kostenis E, Schmidt C et al (2001) Single amino acid substitutions and deletions that alter the G protein coupling properties of the V2 vasopressin receptor identified in yeast by receptor random mutagenesis. J Biol Chem 276:29382–29392

    Article  CAS  PubMed  Google Scholar 

  10. Li B, Scarselli M, Knudsen CD et al (2007) Rapid identification of functionally critical amino acids in a G protein-coupled receptor. Nat Methods 4:169–174

    Article  CAS  PubMed  Google Scholar 

  11. Erlenbach I, Kostenis E, Schmidt C et al (2001) Functional expression of M(1), M(3) and M(5) muscarinic acetylcholine receptors in yeast. J Neurochem 77:1327–1337

    Article  CAS  PubMed  Google Scholar 

  12. Beukers MW, Ijzerman AP (2005) Techniques: how to boost GPCR mutagenesis studies using yeast. Trends Pharmacol Sci 26:533–539

    Article  CAS  PubMed  Google Scholar 

  13. Hulme EC, Lu ZL (1998) Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor. J Physiol Paris 92:269–274

    Article  CAS  PubMed  Google Scholar 

  14. Ward WH, Timms D, Fersht AR (1990) Protein engineering and the study of structure–function relationships in receptors. Trends Pharmacol Sci 11:280–284

    Article  CAS  PubMed  Google Scholar 

  15. Hulme EC, Lu ZL, Ward SD et al (1999) The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm. Eur J Pharmacol 375:247–260

    Article  CAS  PubMed  Google Scholar 

  16. Martin SS, Boucard AA, Clement M et al (2004) Analysis of the third transmembrane domain of the human type 1 angiotensin II receptor by cysteine scanning mutagenesis. J Biol Chem 279:51415–51423

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Q, Casey JR (2007) Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology. Methods 41:439–450

    Article  CAS  PubMed  Google Scholar 

  18. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  CAS  PubMed  Google Scholar 

  19. Hulme EC, Lu ZL, Bee MS (2003) Scanning mutagenesis studies of the M1 muscarinic acetylcholine receptor. Receptors Channels 9:215–228

    Article  CAS  PubMed  Google Scholar 

  20. Hulme EC (2013) GPCR activation: a mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34:67–84

    Article  CAS  PubMed  Google Scholar 

  21. Conner A, Wheatley M, Poyner DR (2010) Site-directed mutagenesis and chimeras. In: Poyner DR, Wheatley M (eds) G protein-coupled receptors essential methods. Wiley, New York

    Google Scholar 

  22. Cotecchia S, Exum S, Caron MG et al (1990) Regions of the alpha 1-adrenergic receptor involved in coupling to phosphatidylinositol hydrolysis and enhanced sensitivity of biological function. Proc Natl Acad Sci U S A 87:2896–2900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu J, Conklin BR, Blin N et al (1995) Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc Natl Acad Sci U S A 92:11642–11646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yin D, Gavi S, Wang HY et al (2004) Probing receptor structure/function with chimeric G-protein-coupled receptors. Mol Pharmacol 65:1323–1332

    Article  CAS  PubMed  Google Scholar 

  25. Conklin BR, Farfel Z, Lustig KD et al (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363:274–276

    Article  CAS  PubMed  Google Scholar 

  26. Conklin BR, Herzmark P, Ishida S et al (1996) Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. Mol Pharmacol 50:885–890

    CAS  PubMed  Google Scholar 

  27. Dixon RA, Kobilka BK, Strader DJ et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  28. Dixon RA, Sigal IS, Rands E et al (1987) Ligand binding to the beta-adrenergic receptor involves its rhodopsin-like core. Nature 326:73–77

    Article  CAS  PubMed  Google Scholar 

  29. Dixon RA, Sigal IS, Candelore MR et al (1987) Structural features required for ligand binding to the beta-adrenergic receptor. EMBO J 6:3269–3275

    CAS  PubMed  Google Scholar 

  30. Lee KB, Ptasienski JA, Pals-Rylaarsdam R et al (2000) Arrestin binding to the M(2) muscarinic acetylcholine receptor is precluded by an inhibitory element in the third intracellular loop of the receptor. J Biol Chem 275:9284–9289

    Article  CAS  PubMed  Google Scholar 

  31. Sawyer GW, Ehlert FJ, Shults CA (2008) Cysteine pairs in the third intracellular loop of the muscarinic m1 acetylcholine receptor play a role in agonist-induced internalization. J Pharmacol Exp Ther 324:196–205

    Article  CAS  PubMed  Google Scholar 

  32. Strader CD, Sigal IS, Blake AD et al (1987) The carboxyl terminus of the hamster beta-adrenergic receptor expressed in mouse L cells is not required for receptor sequestration. Cell 49:855–863

    Article  CAS  PubMed  Google Scholar 

  33. Shapiro RA, Nathanson NM (1989) Deletion analysis of the mouse m1 muscarinic acetylcholine receptor: effects on phosphoinositide metabolism and down-regulation. Biochemistry (Mosc) 28:8946–8950

    Article  CAS  Google Scholar 

  34. Watterson KR, Johnston E, Chalmers C et al (2002) Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J Biol Chem 277:5767–5777

    Article  CAS  PubMed  Google Scholar 

  35. Liao CF, Themmen AP, Joho R et al (1989) Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J Biol Chem 264:7328–7337

    CAS  PubMed  Google Scholar 

  36. Kubo T, Fukuda K, Mikami A et al (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323:411–416

    Article  CAS  PubMed  Google Scholar 

  37. Kubo T, Maeda A, Sugimoto K et al (1986) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett 209:367–372

    Article  CAS  PubMed  Google Scholar 

  38. Bonner TI, Buckley NJ, Young AC et al (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    Article  CAS  PubMed  Google Scholar 

  39. Bonner TI, Young AC, Brann MR et al (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1:403–410

    Article  CAS  PubMed  Google Scholar 

  40. Gocayne J, Robinson DA, FitzGerald MG et al (1987) Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc Natl Acad Sci U S A 84:8296–8300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Frielle T, Collins S, Daniel KW et al (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A 84:7920–7924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kobilka BK, Matsui H, Kobilka TS et al (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science 238:650–656

    Article  CAS  PubMed  Google Scholar 

  43. Cotecchia S, Schwinn DA, Randall RR et al (1988) Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci U S A 85:7159–7163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bunzow JR, Van Tol HH, Grandy DK et al (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    Article  CAS  PubMed  Google Scholar 

  45. Pritchett DB, Bach AW, Wozny M et al (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7:4135–4140

    CAS  PubMed  Google Scholar 

  46. Julius D, MacDermott AB, Axel R et al (1988) Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241:558–564

    Article  CAS  PubMed  Google Scholar 

  47. Strader CD, Sigal IS, Register RB et al (1987) Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc Natl Acad Sci U S A 84:4384–4388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wang T, Duan Y (2009) Ligand entry and exit pathways in the beta2-adrenergic receptor. J Mol Biol 392:1102–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Haga K, Kruse AC, Asada H et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kruse AC, Hu J, Pan AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang C, Jiang Y, Ma J et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  CAS  PubMed  Google Scholar 

  53. Chien EY, Liu W, Zhao Q et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8:404–407

    CAS  PubMed  Google Scholar 

  57. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  58. Conner A, Barwell J, Poyner DR et al (2011) The use of site-directed mutagenesis to study GPCRs. In: Willars GB, Challiss RAJ (eds) Receptor signal transduction protocols: third edition, Methods in molecular biology. Springer Science+Business Media LLC, New York

    Google Scholar 

  59. Ehlert FJ, Rathbun BE (1990) Signaling through the muscarinic receptor-adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. Mol Pharmacol 38:148–158

    CAS  PubMed  Google Scholar 

  60. Ehlert FJ (2000) Ternary complex model. In: Christopoulos A (ed) Biomedical applications of computer modeling. CRC Press, Boca Raton

    Google Scholar 

  61. Ehlert FJ, Griffin MT, Suga H (2011) Analysis of functional responses at G protein coupled receptors: estimation of relative affinity constants for the inactive receptor state. J Pharmacol Exp Ther 338:658–670

    Article  CAS  PubMed  Google Scholar 

  62. Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

    Article  CAS  PubMed  Google Scholar 

  63. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  64. Berrie CP, Birdsall NJ, Burgen AS et al (1979) Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem Biophys Res Commun 87:1000–1005

    Article  CAS  PubMed  Google Scholar 

  65. Childers SR, Snyder SH (1978) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23:759–761

    Article  CAS  PubMed  Google Scholar 

  66. Freedman SB, Poat JA, Woodruff GN (1981) Effect of guanine nucleotides on dopaminergic agonist and antagonist affinity for [3H]sulpiride binding sites in rat striatal membrane preparations. J Neurochem 37:608–612

    Article  CAS  PubMed  Google Scholar 

  67. Griffin MT, Figueroa KW, Liller S et al (2007) Estimation of agonist activity at g protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o, Gs, and G15. J Pharmacol Exp Ther 321:1193–1207

    Article  CAS  PubMed  Google Scholar 

  68. Ehlert FJ, Suga H, Griffin MT (2011) Quantifying agonist activity at G protein-coupled receptors. J Vis Exp 58:e3179

    PubMed  Google Scholar 

  69. Tran JA, Chang A, Matsui M et al (2009) Estimation of relative microscopic affinity constants of agonists for the active state of the receptor in functional studies on M2 and M3 muscarinic receptors. Mol Pharmacol 75:381–396

    Article  CAS  PubMed  Google Scholar 

  70. Suga H, Sawyer GW, Ehlert FJ (2010) Mutagenesis of nucleophilic residues near the orthosteric binding pocket of M1 and M2 muscarinic receptors: effect on the binding of nitrogen mustard analogs of acetylcholine and McN-A-343. Mol Pharmacol 78:745–755

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sawyer, G.W., Ehlert, F.J. (2014). Using In Vitro Mutagenesis to Characterize Structure-Function Relationships in G Protein-Coupled Receptors. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation