Correlative Light and Electron Microscopy Using Immunolabeled Sections

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.

In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griffiths G (2001) Bringing electron microscopy back into focus for cell biology. Trends Cell Biol 11:153–154

    CAS  PubMed  Google Scholar 

  2. Brink HA, Barfels MMG, Burgner RP et al (2003) A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs. Ultramicroscopy 96:367–384

    CAS  PubMed  Google Scholar 

  3. Barfels MMG, Jiang X, Heng YM et al (1998) Low energy loss electron microscopy of chromophore. Micron 29:97–104

    CAS  PubMed  Google Scholar 

  4. Sartori A, Gatz R, Beck F et al (2005) Correlation microscopy: bridging the gap between light- and cryo-electron microscopy. Microsc Microanal 11:16–17

    PubMed  Google Scholar 

  5. Sartori A, Gatz R, Beck F et al (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145

    PubMed  Google Scholar 

  6. Gruska M, Medalia O, Baumeister W et al (2008) Electron tomography of vitreous sections from cultured mammalian cells. J Struct Biol 161:384–392

    CAS  PubMed  Google Scholar 

  7. Agronskaia AV, Valentijn JA, van Driel LF et al (2008) Integrated fluorescence and transmission electron microscopy. J Struct Biol 164:183–189

    CAS  PubMed  Google Scholar 

  8. Karreman MA, Agronskaia AV, Verkleij AJ et al (2009) Discovery of a new RNA containing nuclear structure in UVC-induced apoptotic cells by integrated laser electron microscopy. Biol Cell 101:287–299

    CAS  PubMed  Google Scholar 

  9. Iijima H, Fukuda Y, Arai Y et al. (2013) Hybrid fluorescence and electron cryo-microscopy and cathodoluminescence of a fluorescent protein. J Struct Biol (doi: http://dx.doi.org/10.1016/j.jsb.2013.10.018)

    Google Scholar 

  10. Iijima H, Minoda H, Arai Y et al. (2010) Gordon research conference on 3D EM., Il Ciocco, Italy

    Google Scholar 

  11. Stierhof Y-D, El Kasmi F (2010) Strategies to improve the antigenicity, ultrastructure preservation and visibility of trafficking compartments in Arabidopsis tissue. Eur J Cell Biol 89:285–297

    CAS  PubMed  Google Scholar 

  12. Kukulski W, Schorb M, Welsch S et al (2012) Precise, correlated fluorescence microscopy and electron tomography of lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 111:235–257

    CAS  PubMed  Google Scholar 

  13. Kukulski W, Schorb M, Welsch S et al (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    CAS  PubMed  Google Scholar 

  14. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Watanabe S, Jorgensen EM (2012) Visualizing proteins in electron micrographs at nanometer resolution. Methods Cell Biol 111:283–306

    CAS  PubMed  Google Scholar 

  16. Abolhassani-Dadras S, Vázquez-Nin GH, Echeverria OM et al (1996) Image-EELS for in situ estimation of the phosphorous content of RNP granules. J Microsc (Oxford) 183:215–222

    CAS  Google Scholar 

  17. Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J et al (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    CAS  PubMed  Google Scholar 

  18. Gaietta G, Deerink TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    CAS  PubMed  Google Scholar 

  19. Meißlitzer-Ruppitsch C, Röhrl C, Neumüller J et al (2009) Photooxidation technology for correlated light and electron microscopy. J Microsc (Oxford) 235:322–335

    Google Scholar 

  20. Shu X, Lev-Ram V, Deerinck TJ et al (2011) A genetically encoded tag for correlated light and electron microscopy of Intact cells, tissues, and organisms. PLoS Biol 9:e1001041

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Geuze HJ (1999) A future for electron microscopy in cell biology? Trends Cell Biol 9:92–93

    CAS  PubMed  Google Scholar 

  22. Melan MA, Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J Cell Sci 101:731–743

    PubMed  Google Scholar 

  23. Humbel BM, de Jong MDM, Müller WH et al (1998) Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc Res Tech 42:43–48

    Google Scholar 

  24. Brink M, Humbel BM, de Kloet ER et al (1992) Evidence against the model of nuclear translocation for the glucocorticoid receptor. Endocrinology 130:3575–3581

    CAS  PubMed  Google Scholar 

  25. Stierhof Y-D, Schwarz H, Frank H (1986) Transverse sectioning of plastic-embedded immunolabeled cryosections: morphology and permeability to protein A-colloidal gold complexes. J Ultrastruct Mol Struct Res 97:187–196

    CAS  PubMed  Google Scholar 

  26. Stierhof Y-D, Schwarz H (1989) Labeling properties of sucrose-infiltrated cryosections. Scanning Microsc Suppl 3:35–46

    CAS  PubMed  Google Scholar 

  27. Schwarz H (1994) Immunolabelling of ultrathin resin sections for fluorescence and electron microscopy. In: Jouffrey B, Coliex C (eds) Electron microscopy 1994, ICEM 13. Les Editions de Physique, Les Ulis, France, pp 255–256

    Google Scholar 

  28. Schwarz H, Hohenberg H, Humbel BM (1993) Freeze-substitution in virus research: a preview. In: Hyatt AD, Eaton BT (eds) Immunoelectron microscopy in virus diagnosis and research. CRC, Boca Raton, pp 97–118

    Google Scholar 

  29. Schwarz H (1998) Correlative immunolabelling of ultrathin resin sections for light and electron microscopy. In: Calderón Benavides HA, Yacamán MJ, Jiménez LF et al (eds) Electron microscopy 1998, ICEM 14. Institute of Physics Publishing, Bristol, pp 865–866

    Google Scholar 

  30. Schwarz H, Humbel BM (2008) Correlative light and electron microscopy. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook of cryo-preparation methods for electron microscopy. CRC, Boca Raton, pp 527–555

    Google Scholar 

  31. Fabig G, Kretschmar S, Weiche S et al (2012) Labeling of ultrathin resin sections for correlative light and electron microscopy. Methods Cell Biol 111:75–93

    CAS  PubMed  Google Scholar 

  32. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    CAS  PubMed  Google Scholar 

  33. Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc (Oxford) 143:139–149

    CAS  Google Scholar 

  34. Posthuma G, van Donselaar E, Griffith J et al (2001) Ultrathin cryo-sectioning and immuno-gold labeling. A practical introduction. Department of Cell Biology, Institute of Biomembranes, University Medical Center Utrecht, The Netherlands

    Google Scholar 

  35. Slot JW, Geuze HJ (2007) Cryosectioning and immunolabeling. Nat Protoc 2:2480–2491

    CAS  PubMed  Google Scholar 

  36. Takizawa T, Robinson JM (2006) Correlative microscopy of ultrathin cryosections in placental research. Methods Mol Med 121: 351–369

    PubMed  Google Scholar 

  37. Takizawa T, Robinson JM (2003) Correlative microscopy of ultrathin cryosections is a powerful tool for placental research. Placenta 24:557–565

    CAS  PubMed  Google Scholar 

  38. Stierhof Y-D, van Donselaar E, Schwarz H, Humbel BM (2008) Cryo-fixation, freeze-substitution, rehydration and Tokuyasu-cryo sectioning. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook for cryo-preparation methods for electron microscopy. CRC, Boca Raton, USA, pp 343–365

    Google Scholar 

  39. Van Donselaar E, Posthuma G, Zeuschner D et al (2007) Immunogold labeling of cryo-sections from high-pressure frozen cells. Traffic 8:471–485

    PubMed  Google Scholar 

  40. Ripper D, Schwarz H, Stierhof Y-D (2008) Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration. Biol Cell 100:109–123

    CAS  PubMed  Google Scholar 

  41. Oorschot V, Heidi de Wit H, Annaert WB et al (2002) A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50:1067–1080

    CAS  PubMed  Google Scholar 

  42. Acetarin JD, Carlemalm E, Villiger W (1986) Developments of new Lowicryl resins for embedding biological specimens at even lower temperatures. J Microsc (Oxford) 143:81–88

    CAS  Google Scholar 

  43. Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (Oxford) 126:123–143

    CAS  Google Scholar 

  44. Newman GR, Hobot JA (1987) Modern acrylics for post-embedding immunostaining techniques. J Histochem Cytochem 35:971–981

    CAS  PubMed  Google Scholar 

  45. Newman GR, Hobot JA (1993) Resin microscopy and on-section immunocytochemistry. Springer, Berlin

    Google Scholar 

  46. Scala C, Cenacchi G, Ferrari C et al (1992) A new acrylic resin formulation: a useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40:1799–1804

    CAS  PubMed  Google Scholar 

  47. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:191–194

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  50. Trump BF, Smuckler EA, Benditt EP (1961) A method for staining epoxy sections for light microscopy. J Ultrastruct Res 5:343–348

    CAS  PubMed  Google Scholar 

  51. Saito N, Konishia K, Takeda H et al (2003) Antigen retrieval trial for post-embedding immunoelectron microscopy by heating with several unmasking solutions. J Histochem Cytochem 51:989–994

    CAS  PubMed  Google Scholar 

  52. Yamashita S, Katsumata O, Okada Y (2009) Establishment of a standardized post-embedding method for immunoelectron microscopy by applying heat-induced antigen retrieval. J Electron Microsc 58:267–279

    CAS  Google Scholar 

  53. Micheva KD, Busse B, Weiler NC et al (2010) Array tomography: immunostaining and antibody elution. Neuron 68:639–653

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Causton BE (1986) Does the embedding chemistry interact with tissue? In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM Inc., AMF O'Hare, pp 209–214

    Google Scholar 

  55. Causton BE (1984) The choice of resins for electron immunocytochemistry. In: Polak JM, Varndell IM (eds) Immunolabelling for electron microscopy. Elsevier Science Publishers, Amsterdam, pp 29–36

    Google Scholar 

  56. Van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J Cell Biol 25:117–137

    Google Scholar 

  57. Steinbrecht RA, Müller M (1987) Freeze-substitution and freeze-drying. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 149–172

    Google Scholar 

  58. Humbel BM, Schwarz H (1989) Freeze-substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton, pp 115–134

    Google Scholar 

  59. Humbel B, Marti T, Müller M (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. Beitr Elektronenmikrosk Direktabb Oberfl 16:585–594

    Google Scholar 

  60. Riehle U (1968) Über die Vitrifizierung verdünnter wässriger Lösungen. Federal Institute of Technology, Zürich

    Google Scholar 

  61. Riehle U, Hoechli M (1973) The theory and technique of high pressure freezing. In: Benedetti EL, Favard P (eds) Freeze-etching techniques and applications. Société Française de Microscopie Electronique, Paris, pp 31–61

    Google Scholar 

  62. Müller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation 1983. SEM Inc., AMF O'Hare, pp 131–138

    Google Scholar 

  63. Studer D, Michel M, Müller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–268

    CAS  PubMed  Google Scholar 

  64. Müller M (1992) The integrating power of cryofixation-based electron microscopy in biology. Acta Microsc 1:37–44

    Google Scholar 

  65. Betzig EH, Patterson G, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    CAS  PubMed  Google Scholar 

  66. Hermann R, Schwarz H, Müller M (1991) High precision immunoscanning electron microscopy using Fab fragments coupled to ultra-small colloidal gold. J Struct Biol 107:38–47

    CAS  PubMed  Google Scholar 

  67. Humbel BM, Biegelmann E (1992) A preparation protocol for postembedding immunoelectron microscopy of Dictyostelium discoideum cells with monoclonal antibodies. Scanning Microsc 6:817–825

    CAS  Google Scholar 

  68. Albrecht U, Seulberger H, Schwarz H et al (1990) Correlation of blood–brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535:49–61

    CAS  PubMed  Google Scholar 

  69. Bierkamp C, Schwarz H, Huber O et al (1999) Desmosomal localization of b-catenin in the skin of plakoglobin null-mutant mice. Development 126:371–381

    CAS  PubMed  Google Scholar 

  70. Fialka I, Schwarz H, Reichmann E et al (1996) The estrogen-dependent c-junER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol 132:1115–1132

    CAS  PubMed  Google Scholar 

  71. Hoffmann W, Schwarz H (1996) Ependymins: meningeal-derived extracellular matrix proteins at the blood–brain barrier. Int Rev Cytol 165:121–158

    CAS  PubMed  Google Scholar 

  72. Kurth T, Schwarz H, Schneider S et al (1996) Fine structural immunocytochemistry of catenins in amphibian and mammalian muscle. Cell Tissue Res 286:1–12

    CAS  PubMed  Google Scholar 

  73. Wilsch-Bräuninger M, Schwarz H, Nüsslein-Volhard C (1997) A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139:817–829

    PubMed  Google Scholar 

  74. Nica G, Herzog W, Sonntag C et al (2006) Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Dev Biol 292:189–204

    CAS  PubMed  Google Scholar 

  75. Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Oberti D, Kirschmann MA, Hahnloser RHR (2011) Projection neuron circuits resolved using correlative array tomography. Front Neurosci 5:1–8

    Google Scholar 

  77. Oberti D, Kirschmann MA, Hahnloser RHR (2010) Correlative microscopy of densely labeled projection neurons using neural tracers. Front Neurosci 4:1–9

    Google Scholar 

  78. Pluk H, Stokes DJ, Lich B et al (2009) Advantages of indium–tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells. J Microsc (Oxford) 233:353–363

    CAS  Google Scholar 

  79. Stöffler H-E, Honnert U, Bauer CA et al (1998) Targeting of the myosin-I myr 3 to intercellular adherens type junctions induced by dominant active Cdc42 in HeLa cells. J Cell Sci 111:2779–2788

    PubMed  Google Scholar 

  80. Loussert C, Forestier C-L, Humbel BM (2012) Correlative light and electron microscopy in parasite research. Methods Cell Biol 111:59–73

    CAS  PubMed  Google Scholar 

  81. Kolotuev I, Bumbarger DJ, Labouesse M et al (2012) Targeted ultramicrotomy: a valuable tool for correlated light and electron microscopy of small model organisms. Methods Cell Biol 111:203–222

    CAS  PubMed  Google Scholar 

  82. Kolotuev I, Schwab Y, Labouesse M (2010) A precise and rapid map** protocol for correlative light and electron microscopy of small invertebrate organisms. Biol Cell 102:121–132

    Google Scholar 

  83. Tobler M, Freiburghaus AU (1990) Occupational risks of (meth)acrylate compounds in embedding media for electron microscopy. J Microsc 160:291–298

    CAS  PubMed  Google Scholar 

  84. Beug H, von Kirchbach A, Döderlein G et al (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390

    CAS  PubMed  Google Scholar 

  85. Longin A, Souchier C, French M et al (1993) Comparison of anti-fading agenst used in fluorescence microscopy: Image analysis and laser confocal microscopy study. J Histochem Cytochem 41:1833–1840

    CAS  PubMed  Google Scholar 

  86. Langanger G, De Mey J, Adam H (1983) 1,4-Diazobizyklo-(2.2.2)-Oktan (DABCO) verzögert das Ausbleichen von Immunfluoreszenzpräparaten. Mikroskopie 40:237–241

    CAS  PubMed  Google Scholar 

  87. Johnson GD, Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349–350

    CAS  PubMed  Google Scholar 

  88. Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255

    CAS  PubMed  Google Scholar 

  89. Van Bergen en Henegouwen PMP, Leunissen JLM (1986) Controlled growth of colloidal gold particles and implications for labelling efficiency. Histochemistry 85:81–87

    CAS  PubMed  Google Scholar 

  90. Birrell GB, Hedberg KK, Griffith OH (1987) Pitfalls of immunogold labeling: analysis by light microscopy, transmission electron microscopy, and photoelectron microscopy. J Histochem Cytochem 35:843–853

    CAS  PubMed  Google Scholar 

  91. Griffiths G (1993) Fine structure immunocytochemistry. Springer, Berlin

    Google Scholar 

  92. Ebersold HR, Cordier J-L, Lüthy P (1981) Bacterial mesosomes: method dependent artifacts. Arch Microbiol 130:19–22

    CAS  PubMed  Google Scholar 

  93. Kaneko Y, Walther P (1995) Comparison of ultrastructure of germinating pea leaves prepared by high-pressure freezing-freeze substitution and conventional chemical fixation. J Electron Microsc 44:104–109

    CAS  Google Scholar 

  94. Studer D, Michel M, Wohlwend M et al (1995) Vitrification of articular cartilage by high-pressure freezing. J Microsc (Oxford) 179:321–332

    CAS  Google Scholar 

  95. Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188:155–163

    CAS  PubMed  Google Scholar 

  96. Fernández-Morán H (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid Helium II. Ann N Y Acad Sci 85:689–713

    PubMed  Google Scholar 

  97. Costello MJ, Fetter R, Corless JM (1983) Optimum conditions for the plunge freezing of sandwiched samples. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation, 1983. SEM Inc., AMF O'Hare (Chicago), IL, pp 105–115

    Google Scholar 

  98. Müller M, Meister N, Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140

    PubMed  Google Scholar 

  99. Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    Google Scholar 

  100. Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci U S A 68:2149–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191

    Google Scholar 

  102. Echlin P (1992) Low-temperature microscopy and analysis. Plenum Press, New York

    Google Scholar 

  103. Zierold K, Steinbrecht RA (eds) (1987) Cryotechniques in biological electron microscopy. Springer, Berlin

    Google Scholar 

  104. Cavalier A, Spehner D, Humbel BM (eds) (2008) Handbook for cryo-preparation methods for electron microscopy. CRC Press Inc, Boca Raton, USA

    Google Scholar 

  105. Robards AW, Sleytr UB (eds) (1985) Low temperature methods in biological electron microscopy. Elsevier, Amsterdam

    Google Scholar 

  106. Tokuyasu KT (1976) Membranes as observed in frozen sections. J Ultrastruct Res 55:281–287

    CAS  PubMed  Google Scholar 

  107. Tokuyasu KT (1989) Use of poly (vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21: 163–171

    Google Scholar 

  108. Liou W, Geuze HJ, Slot JW (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol 106:41–58

    CAS  PubMed  Google Scholar 

  109. Griffiths G, Simons K, Warren G et al (1983) Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki forest virus spike glycoproteins. Methods Enzymol 96:466–485

    CAS  PubMed  Google Scholar 

  110. Tokuyasu KT (1986) Cryosections for immunohistochemistry. J Electron Microsc 35:1977–1978

    Google Scholar 

  111. Hayat MA (2000) Principles and techniques of electron microscopy biological applications. Cambridge University Press, Cambridge

    Google Scholar 

  112. Villiger W (1991) Lowicryl resins. In: Hayat MA (ed) Colloidal gold: principles, methods, and applications. Academic, San Diego, pp 59–71

    Google Scholar 

  113. Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J Microsc (Oxford) 134: 213–216

    CAS  Google Scholar 

  114. Hunziker EB, Herrmann W (1987) In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing. J Histochem Cytochem 35:647–655

    CAS  PubMed  Google Scholar 

  115. Verkleij AJ, Humbel BM, Studer D et al (1985) “Lipidic particle” systems as visualized by thin-section electron microscopy. Biochim Biophys Acta 812:591–595

    CAS  Google Scholar 

  116. Schwarz H, Humbel BM (1989) Influence of fixatives and embedding media on immunolabelling of freeze-substituted cells. Scanning Microsc Suppl 3:57–64

    CAS  PubMed  Google Scholar 

  117. Meissner DH, Schwarz H (1990) Improved cryofixation and freeze-substitution of embryonic quail retina: a TEM study on ultrastructural preservation. J Electron Microsc Tech 14:348–356

    CAS  PubMed  Google Scholar 

  118. Müller M, Marti T, Kriz S (1980) Improved structural preservation by freeze substitution. In: Brederoo P., de Priester W (eds) Proc 7th Eur Congr Electron Microsc, The Hague, p 720–721

    Google Scholar 

  119. Grünfelder CG, Engstler M, Weise F et al (2002) Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3:547–559

    PubMed  Google Scholar 

  120. Humbel B, Müller M (1986) Freeze substitution and low temperature embedding. In: Müller M, Becker RP, Boyde A, Wolosewick JJ (eds) The science of biological specimen preparation 1985. SEM Inc., AMF O'Hare, pp 175–183

    Google Scholar 

  121. Monaghan P, Robertson D (1990) Freeze-substitution without aldehyde or osmium fixatives: ultrastructure and implications for immunocytochemistry. J Microsc (Oxford) 158:355–363

    CAS  Google Scholar 

  122. Tonning A, Helms S, Schwarz H et al (2005) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133:331–341

    Google Scholar 

  123. Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, München

    Google Scholar 

  124. Huang WM, Gibson SJ, Facer P et al (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of l-lysine as a slide coating. Histochemistry 77:275–279

    CAS  PubMed  Google Scholar 

  125. Abad A (1988) A study of section wrinkling on single-hole coated grids using TEM and SEM. J Electron Microsc Tech 8:217–222

    CAS  PubMed  Google Scholar 

  126. Rodriguez J, Deinhardt F (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12:316–317

    CAS  PubMed  Google Scholar 

  127. Lennette DA (1978) An improved mounting medium for immunofluorescence microscopy. Am J Clin Pathol 69:647–648

    Google Scholar 

  128. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408

    CAS  PubMed  Google Scholar 

  129. Kärgel E, Menzel R, Honeck H et al (1996) Candida maltosa NADPH-cytochrome P450 reductase: cloning of a full-length cDNA, heterologous expression in Saccharomyces cerevisiae and function of the N-terminal region for membrane anchoring and proliferation of the endoplasmic reticulum. Yeast 12:333–348

    PubMed  Google Scholar 

  130. Behrman EJ (1984) The chemistry of osmium tetroxide fixation. In: Revel JP, Barnard T, Haggis GH (eds) The science of biological specimen preparation 1983. SEM Inc., AMF O'Hare, IL, pp 1–5

    Google Scholar 

  131. Maupin P, Pollard TD (1983) Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol 96:51–62

    CAS  PubMed  Google Scholar 

  132. Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc (Oxford) 133:213–222

    CAS  Google Scholar 

  133. Humbel BM, Konomi M, Takagi T et al (2001) In situ localization of b-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18:433–444

    CAS  PubMed  Google Scholar 

  134. White DL, Andrews SB, Faller JW et al (1976) The chemical nature of osmium tetroxide fixation and staining of membranes by x-ray photoelectron spectroscopy. Biochim Biophys Acta 436:577–592

    CAS  PubMed  Google Scholar 

  135. Matsko N, Müller M (2005) Epoxy resin as fixative during freeze-substitution. J Struct Biol 152:92–103

    CAS  PubMed  Google Scholar 

  136. Micheva KD, O’Rourke N, Busse B et al (2010) Array tomography: immunostaining and antibody elution. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5525

    Google Scholar 

  137. Avrameas S, Ternynck T (1969) The cross-linking of proteins with glutaraldehyde and its use for the preparation of immunoadsorbents. Immunochemistry 6:53–66

    CAS  PubMed  Google Scholar 

  138. Danscher G (1981) Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71:81–88

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The zebra fish specimen and the anti-prolactin serum were provided by Dr. Matthias Hammerschmidt (University of Cologne). Dr. Roger Wepf (EMEZ, ETH Zürich) recommended to use ITO-coated coverslips for SEM and provided such coverslips for pilot experiments. We thank Mrs. Brigitte Sailer for technical support, Mrs. Gertrud Scheer for excellent photographic work, and Dr. Céline Loussert and Dr. York-Dieter Stierhof for their valuable comments on the manuscript. We also would like to thank the financial support by the Faculty of Biology and Medicine of the University of Lausanne and by the R'Equip grant 316030_128692 of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Schwarz, H., Humbel, B.M. (2014). Correlative Light and Electron Microscopy Using Immunolabeled Sections. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation