Analytical Kinetic Modeling: A Practical Procedure

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

This chapter describes a practical procedure to dissect metabolic systems, simplify them, and use or derive enzyme rate equations in order to build a mathematical model of a metabolic system and run simulations. We first deal with a simple example, modeling a single enzyme that follows Michaelis–Menten kinetics and operates in the middle of an unbranched metabolic pathway. Next we describe the rules that can be followed to isolate sub-systems from their environment to simulate their behavior. Finally we use examples to show how to derive suitable rate equations, simpler than those needed for mechanistic studies, though adequate to describe the behavior over the physiological range of conditions.

Many of the general characteristics of kinetic models will be obvious to readers familiar with the theory of metabolic control analysis (Cornish-Bowden, Fundamentals of Enzyme Kinetics, Wiley-Blackwell, Weinheim, 327–380, 2012), but here we shall not assume such knowledge, as the chapter is directed toward practical application rather than theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley, Weinheim, pp 327–380

    Google Scholar 

  2. Teusink B, Passarge J, Reijenga CA et al (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329

    Article  PubMed  CAS  Google Scholar 

  3. Eisenthal R, Cornish-Bowden A (1998) Prospects for antiparasitic drugs. The case of Trypanosoma brucei, the causative agent of African slee** sickness. J Biol Chem 273:5500–5505

    Article  PubMed  CAS  Google Scholar 

  4. Curien G, Ravanel S, Dumas R (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur J Biochem 270:4615–4627

    Article  PubMed  CAS  Google Scholar 

  5. Curien G, Bastien O, Robert-Genthon M et al (2009) Understanding the regulation of aspartate metabolism with a model based on measured kinetic parameters. Mol Syst Biol 5:271

    Article  PubMed  Google Scholar 

  6. Xu YF, Amador-Noguez D, Reaves ML et al (2012) Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat Chem Biol 8:562–568

    Article  PubMed  CAS  Google Scholar 

  7. Endler L, Rodriguez N, Juty N et al (2009) Designing and encoding models for synthetic biology. J R Soc Interface 6:S405–S417

    Article  PubMed  Google Scholar 

  8. Funahashi A, Matsuoka Y, Jouraku A et al (2008) Cell designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265

    Article  Google Scholar 

  9. Piedrafita G, Montero F, Moran F et al (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. Plos Comput Biol 6:e1000871

    Article  Google Scholar 

  10. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridgre University Press, Cambridge, pp 547–577

    Google Scholar 

  11. Piedrafita G, Cornish-Bowden A, Moran F, Montero F (2012) Size matters: influence of stochasticity on the self-maintenance of a simple model of metabolic closure. J Theor Biol 300:143–151

    Article  PubMed  Google Scholar 

  12. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  13. Curien G, Ravanel S, Robert M, Dumas R (2005) Identification of six novel allosteric effectors of Arabidopsis thaliana Aspartate kinase-Homoserine dehydrogenase isoforms: physiological context sets the specificity. J Biol Chem 280:41178–41183

    Article  PubMed  CAS  Google Scholar 

  14. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  15. Cornish-Bowden A, Cardenas ML (2001) Information transfer in metabolic pathways. Effects of irreversible steps in computer models. Eur J Biochem 268:6616–6624

    Article  PubMed  CAS  Google Scholar 

  16. Cornish-Bowden A, Hofmeyr JHS (2005) Enzymes in context. The Biochemist 27:11–14

    CAS  Google Scholar 

  17. van Eunen K, Bouwman J, Daran-Lapujade P et al (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–760

    Article  PubMed  Google Scholar 

  18. Rohwer JM, Hanekom AJ, Crous C, Snoep JL, Hofmeyr JHS (2006) Evaluation of a simplified generic bi-substrate rate equation for computational systems biology. Syst Biol (Stevenage) 153:338–341

    Article  CAS  Google Scholar 

  19. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  20. Wessel PM, Graciet E, Douce R, Dumas R (2000) Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments. Biochemistry 39:15136–15143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Elisa Dell’Aglio for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Curien, G., Cárdenas, M.L., Cornish-Bowden, A. (2014). Analytical Kinetic Modeling: A Practical Procedure. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation