Experimental Design Methodologies in the Optimization of Chiral CE or CEC Separations: An Overview

  • Protocol
  • First Online:
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 970))

Abstract

In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dejaegher B, Vander Heyden Y (2009) The use of experimental design in separation science. Acta Chromatographica 21:161–201

    Article  CAS  Google Scholar 

  2. Dejaegher B, Durand A, Vander Heyden Y (2010) Experimental design in method optimization and robustness testing. In: Hanrahan G, Gomez FA (eds) Chemometric Methods in Capillary Electrophoresis. John Wiley & Sons, New Jersey, pp 11–74

    Google Scholar 

  3. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1997) Handbook of Chemometrics and Qualimetrics: Part A. Elsevier, Amsterdam

    Google Scholar 

  4. Vargas MG, Vander Heyden Y, Maftouh M, Massart DL (1999) Rapid development of the enantiomeric separation of β-blockers by capillary electrophoresis using an experimental design approach. J Chromatogr A 855:681–693

    Article  PubMed  CAS  Google Scholar 

  5. Perrin C, Vargas MG, Vander Heyden Y, Maftouh M, Massart DL (2000) Fast development of separation methods for the chiral analysis of amino acid derivatives using capillary electrophoresis and experimental designs. J Chromatogr A 883:249–265

    Article  PubMed  CAS  Google Scholar 

  6. Elek J, Mangelings D, Iványi T, Lázár I, Vander Heyden Y (2005) Enantioselective capillary electrophoretic separation of tryptophane- and tyrosine-methylesters in a dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin. J Pharm Biomed Anal 38:601–608

    Article  PubMed  CAS  Google Scholar 

  7. Loukas YL, Sabbah S, Scriba GKE (2001) Method development and validation for the chiral separation of peptides in the presence of cyclodextrins using capillary electrophoresis and experimental design. J Chromatogr A 931:141–152

    Article  CAS  Google Scholar 

  8. Rudaz S, Cherkaoui S, Gauvrit J-Y, Lantéri P, Veuthey J-L (2001) Experimental designs to investigate capillary electrophoresis-electrospray ionization-mass spectrometry enantioseparation with the partial-filling technique. Electrophoresis 22:3316–3326

    Article  PubMed  CAS  Google Scholar 

  9. Ficarra R, Cutroneo P, Aturki Z, Tommasini S, Calabro ML, Phan-Tan-Luu R, Fanali S, Ficarra P (2002) An experimental design methodology applied to the enantioseparation of a non-steroidal anti-inflammatory drug candidate. J Pharm Biomed Anal 29:989–997

    Article  PubMed  CAS  Google Scholar 

  10. Perrin C, Fabre H, Massart DL, Vander Heyden Y (2003) Influence of peak measurement parameters on the quality of chiral electrophoretic separations. Electrophoresis 24:2469–2480

    Article  PubMed  CAS  Google Scholar 

  11. Perrin C, Vander Heyden Y, Maftouh M, Massart DL (2001) Rapid screening for chiral separations by short-end injection capillary electrophoresis using highly sulfated cyclodextrins as chiral selectors. Electrophoresis 22:3203–3215

    Article  PubMed  CAS  Google Scholar 

  12. Jimidar M, Van Ael W, De Smet M, Cockaerts P (2002) Method validation and robustness testing of an enantioselective CE method for chemical quality control. LC-GC Europe 15:2–9

    Google Scholar 

  13. Perrin C, Fabre H, Maftouh M, Massart DL, Vander Heyden Y (2003) Robustness testing of chiral separations by capillary electrophoresis using highly-sulfated cyclodextrins. J Chromatogr A 1007:165–177

    Article  PubMed  CAS  Google Scholar 

  14. Mangelings D, Perrin C, Massart DL, Maftouh M, Eeltink S, Kok WT, Schoenmakers PJ, Vander Heyden Y (2004) Optimisation of the chlorthalidone chiral separation by capillary electrochromatography using an achiral stationary phase and cyclodextrin in the mobile phase. Anal Chim Acta 509:11–19

    Article  CAS  Google Scholar 

  15. Mangelings D, Tanret I, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2005) Separation strategy for acidic chiral pharmaceuticals with capillary electrochromatography on polysaccharide stationary phases. Electrophoresis 26:818–832

    Article  PubMed  CAS  Google Scholar 

  16. Mangelings D, Discry J, Maftouh M, Massart DL, Vander Heyden Y (2005) Strategy for the chiral separation of non-acidic pharmaceuticals with capillary electrochromatography. Electrophoresis 26:3930–3941

    Article  PubMed  CAS  Google Scholar 

  17. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:302–325

    Google Scholar 

  18. Montgomery DC (1997) Design and analysis of experiments, 4th edn. John Wiley & Sons, New York

    Google Scholar 

  19. Vander Heyden Y, Khots MS, Massart DL (1993) Three-level screening designs for the optimisation or the ruggedness testing of analytical procedures. Anal Chim Acta 276:189–195

    Article  Google Scholar 

  20. de Aguiar PF, Bourguignon B, Khots MS, Massart DL, Phan-Than-Luu R (1995) D-optimal designs. Chemometrics Intell Lab Syst 30:199–210

    Article  CAS  Google Scholar 

  21. Dejaegher B, Vander Heyden Y (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158

    Article  PubMed  CAS  Google Scholar 

  22. Dong F (1993) On the identification of active contrasts in unreplicated fractional factorials. Stat Sin 3:209–217

    Google Scholar 

  23. Dejaegher B, Capron X, Smeyers-Verbeke J, Vander Heyden Y (2006) Randomization tests to identify significant effects in experimental designs for robustness testing. Anal Chim Acta 564:184–200

    Article  CAS  Google Scholar 

  24. Dejaegher B, Durand A, Vander Heyden Y (2009) Identification of significant effects from an experimental screening design in the absence of effect sparsity. J Chromatogr B 877:2252–2261

    Article  CAS  Google Scholar 

  25. Draper NR, Smith H (1981) Applied Regression Analysis, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  26. Morgan E (1991) Chemometrics: experimental design. Analytical Chemistry by Open Learning. John Wiley & Sons, Chichester

    Google Scholar 

  27. Vander Heyden Y, Massart DL (1996) Review of robustness in analytical chemistry. In: Hendriks MWB, de Boer JH, Smilde AK (eds) Robustness of analytical chemical methods and pharmaceutical technological products. Elsevier, Amsterdam, pp 79–147

    Chapter  Google Scholar 

  28. Box GEP, Behnken DW (1960) Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. Ann Math Stat 31:838–864

    Article  Google Scholar 

  29. Doehlert DH (1970) Uniform shell designs. Appl Stat 19:231–239

    Article  Google Scholar 

  30. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  31. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Google Scholar 

Download references

Acknowledgments

Bieke Dejaegher is a postdoctoral fellow of the Fund for Scientific Research (FWO)—Vlaanderen, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Vander Heyden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dejaegher, B., Mangelings, D., Heyden, Y.V. (2013). Experimental Design Methodologies in the Optimization of Chiral CE or CEC Separations: An Overview. In: Scriba, G. (eds) Chiral Separations. Methods in Molecular Biology, vol 970. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-263-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-263-6_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-262-9

  • Online ISBN: 978-1-62703-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation