Trait Loci Map** and CSF Proteome

  • Protocol
  • First Online:
Cerebrospinal Fluid (CSF) Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2044))

  • 1398 Accesses

Abstract

Recent advance in high-throughput proteome analysis has enabled genome-wide and proteome-wide analyses of associations between single nucleotide polymorphisms and protein expression levels. Protein quantitative trait locus (pQTL) studies using cerebrospinal fluid (CSF) and DNA samples may provide valuable insights into the genetic basis and molecular mechanisms regulating protein expression in the central nervous system. In this chapter, we describe a step-by-step procedures of CSF collection and pQTL analysis, by using PLINK and R software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sasayama D, Hattori K, Ogawa S, Yokota Y, Matsumura R, Teraishi T, Hori H, Ota M, Yoshida S, Kunugi H (2017) Genome-wide quantitative trait loci map** of the human cerebrospinal fluid proteome. Hum Mol Genet 26(1):44–51. https://doi.org/10.1093/hmg/ddw366

    Article  CAS  PubMed  Google Scholar 

  2. Sasayama D, Hori H, Nakamura S, Miyata R, Teraishi T, Hattori K, Ota M, Yamamoto N, Higuchi T, Amano N, Kunugi H (2013) Identification of single nucleotide polymorphisms regulating peripheral blood mRNA expression with genome-wide significance: an eQTL study in the Japanese population. PLoS One 8(1):e54967. https://doi.org/10.1371/journal.pone.0054967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H, Kren V, Pravenec M, Hubner N, Aitman TJ (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2(10):e172. https://doi.org/10.1371/journal.pgen.0020172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stranger BE, Forrest MS, Clark AG, Minichiello MJ, Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE, Tavare S, Deloukas P, Dermitzakis ET (2005) Genome-wide associations of gene expression variation in humans. PLoS Genet 1(6):e78

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim Y, **a K, Tao R, Giusti-Rodriguez P, Vladimirov V, van den Oord E, Sullivan PF (2014) A meta-analysis of gene expression quantitative trait loci in brain. Transl Psychiatry 4:e459. https://doi.org/10.1038/tp.2014.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lourdusamy A, Newhouse S, Lunnon K, Proitsi P, Powell J, Hodges A, Nelson SK, Stewart A, Williams S, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Lovestone S, AddNeuroMed C, Dobson R, Alzheimer’s Disease Neuroimaging I (2012) Identification of cis-regulatory variation influencing protein abundance levels in human plasma. Hum Mol Genet 21(16):3719–3726. https://doi.org/10.1093/hmg/dds186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu L, Candille SI, Choi Y, **e D, Jiang L, Li-Pook-Than J, Tang H, Snyder M (2013) Variation and genetic control of protein abundance in humans. Nature 499(7456):79–82. https://doi.org/10.1038/nature12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tarnaris A, Toma AK, Chapman MD, Petzold A, Keir G, Kitchen ND, Watkins LD (2011) Rostrocaudal dynamics of CSF biomarkers. Neurochem Res 36(3):528–532. https://doi.org/10.1007/s11064-010-0374-1

    Article  CAS  PubMed  Google Scholar 

  9. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, Hintzen RQ, Hughes SG, Johnson MH, Krasulova E, Kuhle J, Magnone MC, Rajda C, Rejdak K, Schmidt HK, van Pesch V, Waubant E, Wolf C, Giovannoni G, Hemmer B, Tumani H, Deisenhammer F (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73(22):1914–1922. https://doi.org/10.1212/WNL.0b013e3181c47cc2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. https://doi.org/10.1186/s13742-015-0047-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanisawa K, Arai Y, Hirose N, Shimokata H, Yamada Y, Kawai H, Kojima M, Obuchi S, Hirano H, Yoshida H, Suzuki H, Fujiwara Y, Ihara K, Sugaya M, Arai T, Mori S, Sawabe M, Sato N, Muramatsu M, Higuchi M, Liu YW, Kong QP, Tanaka M (2017) Exome-wide association study identifies CLEC3B missense variant p.S106G as being associated with extreme longevity in east asian populations. J Gerontol A Biol Sci Med Sci 72(3):309–318. https://doi.org/10.1093/gerona/glw074

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Sun Y, Stang P, Berlin JA, Wilcox MA, Li Q (2009) Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling. BMC Proc 3(Suppl 7):S109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Valikangas T, Suomi T, Elo LL (2018) A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform 19(1):1–11. https://doi.org/10.1093/bib/bbw095

    Article  CAS  PubMed  Google Scholar 

  14. Sun W (2012) A statistical framework for eQTL map** using RNA-seq data. Biometrics 68(1):1–11. https://doi.org/10.1111/j.1541-0420.2011.01654.x

    Article  PubMed  Google Scholar 

  15. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics (Oxford, England) 28(10):1353–1358. https://doi.org/10.1093/bioinformatics/bts163

    Article  CAS  Google Scholar 

  16. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  17. Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C (1992) Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Phys 262(1 Pt 2):R20–R24. https://doi.org/10.1152/ajpregu.1992.262.1.R20

    Article  CAS  Google Scholar 

  18. Bateman RJ, Wen G, Morris JC, Holtzman DM (2007) Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology 68(9):666–669. https://doi.org/10.1212/01.wnl.0000256043.50901.e3

    Article  CAS  PubMed  Google Scholar 

  19. Moghekar A, Goh J, Li M, Albert M, O’Brien RJ (2012) Cerebrospinal fluid Abeta and tau level fluctuation in an older clinical cohort. Arch Neurol 69(2):246–250. https://doi.org/10.1001/archneurol.2011.732

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carson D, Serpell M (1996) Choosing the best needle for diagnostic lumbar puncture. Neurology 47(1):33–37

    Article  CAS  PubMed  Google Scholar 

  21. Zorrilla-Vaca A, Mathur V, Wu CL, Grant MC (2018) The impact of spinal needle selection on postdural puncture headache: a meta-analysis and metaregression of randomized studies. Reg Anesth Pain Med 43(5):502–508. https://doi.org/10.1097/AAP.0000000000000775

    Article  PubMed  Google Scholar 

  22. Siever L, Kraemer H, Sack R, Angwin P, Berger P, Zarcone V, Barchas J, Brodie HK (1975) Gradients of biogenic amine metabolites in cerebrospinal fluid. Dis Nerv Syst 36(1):13–16

    CAS  PubMed  Google Scholar 

  23. Wago KJ, Skarsvag TI, Lundbom JS, Tangen LF, Ballo S, Hjelseng T, Finsen V (2016) The importance of needle gauge for pain during injection of lidocaine. J Plast Surg Hand Surg 50(2):115–118. https://doi.org/10.3109/2000656X.2015.1111223

    Article  PubMed  Google Scholar 

  24. Peskind ER, Riekse R, Quinn JF, Kaye J, Clark CM, Farlow MR, Decarli C, Chabal C, Vavrek D, Raskind MA, Galasko D (2005) Safety and acceptability of the research lumbar puncture. Alzheimer Dis Assoc Disord 19(4):220–225

    Article  PubMed  Google Scholar 

  25. Kauwe JS, Bailey MH, Ridge PG, Perry R, Wadsworth ME, Hoyt KL, Staley LA, Karch CM, Harari O, Cruchaga C, Ainscough BJ, Bales K, Pickering EH, Bertelsen S, Alzheimer's Disease Neuroimaging I, Fagan AM, Holtzman DM, Morris JC, Goate AM (2014) Genome-wide association study of CSF levels of 59 Alzheimer’s disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet 10(10):e1004758. https://doi.org/10.1371/journal.pgen.1004758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kirsten H, Al-Hasani H, Holdt L, Gross A, Beutner F, Krohn K, Horn K, Ahnert P, Burkhardt R, Reiche K, Hackermuller J, Loffler M, Teupser D, Thiery J, Scholz M (2015) Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding locidagger. Hum Mol Genet 24(16):4746–4763. https://doi.org/10.1093/hmg/ddv194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daimei Sasayama .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Supplementary File 1

Sample (3615 kb)

Supplementary File 2

Sample (1 kb)

Supplementary File 3

CSF protein (TXT 19 kb)

Supplementary File 4

Covariate (TXT 1 kb)

Supplementary File 5

Gene location (TXT 691 bytes)

Supplementary File 6

SNP position (TXT 150 kb)

Supplementary File 7

Cis pqtl (TXT 7 kb)

Supplementary File 8

Trans pqtl (TXT 50 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sasayama, D., Hattori, K., Kunugi, H. (2019). Trait Loci Map** and CSF Proteome. In: Santamaría, E., Fernández-Irigoyen, J. (eds) Cerebrospinal Fluid (CSF) Proteomics. Methods in Molecular Biology, vol 2044. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9706-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9706-0_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9705-3

  • Online ISBN: 978-1-4939-9706-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation