Mobilization and Collection of Peripheral Blood Stem Cells in Adults: Focus on Timing and Benchmarking

  • Protocol
  • First Online:
Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2017))

  • 1426 Accesses

Abstract

Peripheral blood stem cells (PBSCs) are preferentially used as a hematopoietic stem cell source for autologous blood stem cell transplantation (ABSCT) upon high-dose chemotherapy (HDT) in a variety of hemato-oncologic diseases. As a prerequisite, hematopoietic stem cells have to be mobilized into the peripheral blood (PB) and collected by leukapheresis (LP). Despite continuous improvements, e.g., the introduction of plerixafor, current challenges are the further optimization regarding the leukapheresis procedure, preventing collection failures, as well as benchmarking and harmonization of mobilization approaches between institutions.

This chapter summarizes the current PBSC mobilization and collection approaches and is focusing on timely orchestration of mobilization therapy, granulocyte colony-stimulating factor (G-CSF) application, and peripheral blood (PB) CD34+ cell assessment. Moreover, strategies for prediction and performance assessment of the PBSC collection yield are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Passweg JR, Baldomero H, Gratwohl A, Bregni M, Cesaro S, Dreger P et al (2012) The EBMT activity survey: 1990-2010. Bone Marrow Transplant 47(7):906–923

    Article  CAS  PubMed  Google Scholar 

  2. Ljungman P, Urbano-Ispizua A, Cavazzana-Calvo M, Demirer T, Dini G, Einsele H et al (2006) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 37(5):439–449

    Article  CAS  PubMed  Google Scholar 

  3. Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P et al (2016) Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant 51(6):786–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al (1996) Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347(8998):353–357

    Article  CAS  PubMed  Google Scholar 

  5. Roberts MM, To LB, Gillis D, Mundy J, Rawling C, Ng K et al (1993) Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 12(5):469–475

    CAS  PubMed  Google Scholar 

  6. To LB, Roberts MM, Haylock DN, Dyson PG, Branford AL, Thorp D et al (1992) Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9(4):277–284

    CAS  PubMed  Google Scholar 

  7. Chen SH, Wang TF, Yang KL (2013) Hematopoietic stem cell donation. Int J Hematol 97(4):446–455

    Article  PubMed  Google Scholar 

  8. Pusic I, DiPersio JF (2008) The use of growth factors in hematopoietic stem cell transplantation. Curr Pharm Des 14(20):1950–1961

    Article  CAS  PubMed  Google Scholar 

  9. Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al (2010) Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499

    Article  CAS  PubMed  Google Scholar 

  10. Mohty M, Ho AD (2011) In and out of the niche: perspectives in mobilization of hematopoietic stem cells. Exp Hematol 39(7):723–729

    Article  CAS  PubMed  Google Scholar 

  11. Bensinger W, DiPersio JF, McCarty JM (2009) Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 43(3):181–195

    Article  CAS  PubMed  Google Scholar 

  12. Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al (2009) Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 43(8):619–625

    Article  CAS  PubMed  Google Scholar 

  13. Giralt S, Costa L, Schriber J, Dipersio J, Maziarz R, McCarty J et al (2014) Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant 20(3):295–308

    Article  PubMed  Google Scholar 

  14. Gertz MA (2010) Current status of stem cell mobilization. Br J Haematol 150(6):647–662

    Article  CAS  PubMed  Google Scholar 

  15. Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al (2008) Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 14(9):1045–1056

    Article  CAS  PubMed  Google Scholar 

  16. Narayanasami U, Kanteti R, Morelli J, Klekar A, Al-Olama A, Keating C et al (2001) Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood 98(7):2059–2064

    Article  CAS  PubMed  Google Scholar 

  17. Dazzi C, Cariello A, Rosti G, Argnani M, Sebastiani L, Ferrari E et al (2000) Is there any difference in PBPC mobilization between cyclophosphamide plus G-CSF and G-CSF alone in patients with non-Hodgkin’s Lymphoma? Leuk Lymphoma 39(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  18. Desikan KR, Barlogie B, Jagannath S, Vesole DH, Siegel D, Fassas A et al (1998) Comparable engraftment kinetics following peripheral-blood stem-cell infusion mobilized with granulocyte colony-stimulating factor with or without cyclophosphamide in multiple myeloma. J Clin Oncol 16(4):1547–1553

    Article  CAS  PubMed  Google Scholar 

  19. Alegre A, Tomas JF, Martinez-Chamorro C, Gil-Fernandez JJ, Fernandez-Villalta MJ, Arranz R et al (1997) Comparison of peripheral blood progenitor cell mobilization in patients with multiple myeloma: high-dose cyclophosphamide plus GM-CSF vs G-CSF alone. Bone Marrow Transplant 20(3):211–217

    Article  CAS  PubMed  Google Scholar 

  20. Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13(10):2547–2555

    Article  CAS  PubMed  Google Scholar 

  21. Sung AD, Grima DT, Bernard LM, Brown S, Carrum G, Holmberg L et al (2013) Outcomes and costs of autologous stem cell mobilization with chemotherapy plus G-CSF vs G-CSF alone. Bone Marrow Transplant 48(11):1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohammadi S, Malek Mohammadi A, Nikbakht M, Norooznezhad AH, Alimoghaddam K, Ghavamzadeh A (2017) Optimizing stem cells mobilization strategies to ameliorate patient outcomes: a review of guide- lines and recommendations. Int J Hematol Oncol Stem Cell Res 11(1):78–88

    PubMed  PubMed Central  Google Scholar 

  23. Baertsch MA, Schlenzka J, Lisenko K, Krzykalla J, Becker N, Weisel K et al (2017) Cyclophosphamide-based stem cell mobilization in relapsed multiple myeloma patients: a subgroup analysis from the phase III trial ReLApsE. Eur J Haematol 99(1):42–50

    Article  CAS  PubMed  Google Scholar 

  24. Lisenko K, McClanahan F, Schoning T, Schwarzbich MA, Cremer M, Dittrich T et al (2016) Minimal renal toxicity after Rituximab DHAP with a modified cisplatin application scheme in patients with relapsed or refractory diffuse large B-cell lymphoma. BMC Cancer 16(1):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kriegsmann K, Heilig C, Cremer M, Novotny P, Kriegsmann M, Bruckner T et al (2017) Successful collection of peripheral blood stem cells upon VIDE chemomobilization in sarcoma patients. Eur J Haematol 99(5):459–464

    Article  CAS  PubMed  Google Scholar 

  26. Kriegsmann K, Schmitt A, Kriegsmann M, Bruckner T, Anyanwu A, Witzens-Harig M et al (2018) Orchestration of chemomobilization and G-CSF administration for successful hematopoietic stem cell collection. Biol Blood Marrow Transplant 24(6):1281–1288

    Article  CAS  PubMed  Google Scholar 

  27. Mohty M, Hubel K, Kroger N, Aljurf M, Apperley J, Basak GW et al (2014) Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for blood and marrow transplantation. Bone Marrow Transplant 49(7):865–872

    Article  CAS  PubMed  Google Scholar 

  28. Marchesi F, Mengarelli A (2016) Biosimilar filgrastim in autologous peripheral blood hematopoietic stem cell mobilization and post-transplant hematologic recovery. Curr Med Chem 23(21):2217–2229

    Article  CAS  PubMed  Google Scholar 

  29. Subramanyam M (2013) Clinical development of biosimilars: an evolving landscape. Bioanalysis 5(5):575–586

    Article  CAS  PubMed  Google Scholar 

  30. Martino M, Recchia AG, Moscato T, Fedele R, Neri S, Gentile M et al (2015) Efficacy of biosimilar granulocyte colony-stimulating factor versus originator granulocyte colony-stimulating factor in peripheral blood stem cell mobilization in de novo multiple myeloma patients. Cytotherapy 17(10):1485–1493

    Article  CAS  PubMed  Google Scholar 

  31. Marchesi F, Vacca M, Gumenyuk S, Pandolfi A, Renzi D, Palombi F, Pisani F, Romano A, Spadea A, Ipsevich F, Santinelli S, De Rienzo M, Papa E, Canfora M, Laurenzi L, Foddai ML, Pierelli L, Mengarelli A (2016) Biosimilar filgrastim (Zarzio®) vs. lenograstim (Myelostim®) for peripheral blood stem cell mobilization in adult patients with lymphoma and myeloma: a single center experience.Leuk Lymphoma 57(2):489-492

    Google Scholar 

  32. Remenyi P, Gopcsa L, Marton I, Reti M, Mikala G, Peto M et al (2014) Peripheral blood stem cell mobilization and engraftment after autologous stem cell transplantation with biosimilar rhG-CSF. Adv Ther 31(4):451–460

    Article  PubMed  Google Scholar 

  33. Lefrere F, Brignier AC, Elie C, Ribeil JA, Bernimoulin M, Aoun C et al (2011) First experience of autologous peripheral blood stem cell mobilization with biosimilar granulocyte colony-stimulating factor. Adv Ther 28(4):304–310

    Article  CAS  PubMed  Google Scholar 

  34. Maul JT, Stenner-Liewen F, Seifert B, Pfrommer S, Petrausch U, Kiessling MK et al (2017) Efficacious and save use of biosimilar filgrastim for hematopoietic progenitor cell chemo-mobilization with vinorelbine in multiple myeloma patients. J Clin Apher 32(1):21–26

    Article  PubMed  Google Scholar 

  35. Ria R, Gasparre T, Mangialardi G, Bruno A, Iodice G, Vacca A et al (2010) Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplant 45(2):277–281

    Article  CAS  PubMed  Google Scholar 

  36. Kim IH, Park SK, Suh OK, Oh JM (2003) Comparison of lenograstim and filgrastim on haematological effects after autologous peripheral blood stem cell transplantation with high-dose chemotherapy. Curr Med Res Opin 19(8):753–759

    Article  CAS  PubMed  Google Scholar 

  37. Lefrere F, Bernard M, Audat F, Cavazzana-Calvo M, Belanger C, Hermine O et al (1999) Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leuk Lymphoma 35(5–6):501–505

    Article  CAS  PubMed  Google Scholar 

  38. Duong HK, Savani BN, Copelan E, Devine S, Costa LJ, Wingard JR et al (2014) Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 20(9):1262–1273

    Article  PubMed  Google Scholar 

  39. Costa LJ, Miller AN, Alexander ET, Hogan KR, Shabbir M, Schaub C et al (2011) Growth factor and patient-adapted use of plerixafor is superior to CY and growth factor for autologous hematopoietic stem cells mobilization. Bone Marrow Transplant 46(4):523–528

    Article  CAS  PubMed  Google Scholar 

  40. Tuchman SA, Bacon WA, Huang LW, Long G, Rizzieri D, Horwitz M et al (2015) Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma. J Clin Apher 30(3):176–182

    Article  PubMed  Google Scholar 

  41. Farina L, Guidetti A, Spina F, Roncari L, Longoni P, Ravagnani F et al (2014) Plerixafor “on demand”: results of a strategy based on peripheral blood CD34+ cells in lymphoma patients at first or subsequent mobilization with chemotherapy+G-CSF. Bone Marrow Transplant 49(3):453–455

    Article  CAS  PubMed  Google Scholar 

  42. Shaughnessy P, Chao N, Shapiro J, Walters K, McCarty J, Abhyankar S et al (2013) Pharmacoeconomics of hematopoietic stem cell mobilization: an overview of current evidence and gaps in the literature. Biol Blood Marrow Transplant 19(9):1301–1309

    Article  PubMed  Google Scholar 

  43. Kim JE, Yoo C, Kim S, Lee DH, Kim SW, Lee JS et al (2011) Optimal timing of G-CSF administration for effective autologous stem cell collection. Bone Marrow Transplant 46(6):806–812

    Article  CAS  PubMed  Google Scholar 

  44. Strauss SJ, McTiernan A, Driver D, Hall-Craggs M, Sandison A, Cassoni AM et al (2003) Single center experience of a new intensive induction therapy for ewing’s family of tumors: feasibility, toxicity, and stem cell mobilization properties. J Clin Oncol 21(15):2974–2981

    Article  CAS  PubMed  Google Scholar 

  45. Cheng J, Schmitt M, Wuchter P, Buss EC, Witzens-Harig M, Neben K et al (2015) Plerixafor is effective given either preemptively or as a rescue strategy in poor stem cell mobilizing patients with multiple myeloma. Transfusion 55(2):275–283

    Article  CAS  PubMed  Google Scholar 

  46. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981

    Article  CAS  PubMed  Google Scholar 

  47. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530

    CAS  PubMed  Google Scholar 

  48. Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR et al (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72(5):588–596

    Article  CAS  PubMed  Google Scholar 

  49. Cashen AF, Nervi B, DiPersio J (2007) AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol 3(1):19–27

    Article  CAS  PubMed  Google Scholar 

  50. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S et al (2016) Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 364(3):573–584

    Article  CAS  PubMed  Google Scholar 

  52. Wuchter P, Leinweber C, Saffrich R, Hanke M, Eckstein V, Ho AD et al (2014) Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell Tissue Res 355(2):315–326

    Article  CAS  PubMed  Google Scholar 

  53. Ludwig A, Saffrich R, Eckstein V, Bruckner T, Wagner W, Ho AD et al (2014) Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy 16(1):111–121

    Article  CAS  PubMed  Google Scholar 

  54. Sancho JM, Morgades M, Grifols JR, Junca J, Guardia R, Vives S et al (2012) Predictive factors for poor peripheral blood stem cell mobilization and peak CD34(+) cell count to guide pre-emptive or immediate rescue mobilization. Cytotherapy 14(7):823–829

    Article  CAS  PubMed  Google Scholar 

  55. Han X, Ma L, Zhao L, He X, Liu P, Zhou S et al (2012) Predictive factors for inadequate stem cell mobilization in Chinese patients with NHL and HL: 14-year experience of a single-center study. J Clin Apher 27(2):64–74

    Article  CAS  PubMed  Google Scholar 

  56. Olivieri A, Marchetti M, Lemoli R, Tarella C, Iacone A, Lanza F et al (2012) Proposed definition of ’poor mobilizer’ in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant 47(3):342–351

    Article  CAS  PubMed  Google Scholar 

  57. Sinha S, Gastineau D, Micallef I, Hogan W, Ansell S, Buadi F et al (2011) Predicting PBSC harvest failure using circulating CD34 levels: develo** target-based cutoff points for early intervention. Bone Marrow Transplant 46(7):943–949

    Article  CAS  PubMed  Google Scholar 

  58. Chen AI, Bains T, Murray S, Knight R, Shoop K, Bubalo J et al (2012) Clinical experience with a simple algorithm for plerixafor utilization in autologous stem cell mobilization. Bone Marrow Transplant 47(12):1526–1529

    Article  CAS  PubMed  Google Scholar 

  59. Abhyankar S, DeJarnette S, Aljitawi O, Ganguly S, Merkel D, McGuirk J (2012) A risk-based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor. Bone Marrow Transplant 47(4):483–487

    Article  CAS  PubMed  Google Scholar 

  60. Costa LJ, Alexander ET, Hogan KR, Schaub C, Fouts TV, Stuart RK (2011) Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 46(1):64–69

    Article  CAS  PubMed  Google Scholar 

  61. Hundemer M, Engelhardt M, Bruckner T, Kraeker S, Schmitt A, Sauer S et al (2014) Rescue stem cell mobilization with plerixafor economizes leukapheresis in patients with multiple myeloma. J Clin Apher 29(6):299–304

    Article  PubMed  Google Scholar 

  62. Baertsch MA, Kriegsmann K, Pavel P, Bruckner T, Hundemer M, Kriegsmann M et al (2018) Platelet count before peripheral blood stem cell mobilization is associated with the need for plerixafor but not with the collection result. Transfus Med Hemother 45(1):24–31

    Article  PubMed  Google Scholar 

  63. Lisenko K, Pavel P, Kriegsmann M, Bruckner T, Hillengass J, Goldschmidt H et al (2017) Storage duration of autologous stem cell preparations has no impact on hematopoietic recovery after transplantation. Biol Blood Marrow Transplant 23(4):684–690

    Article  PubMed  Google Scholar 

  64. Wuchter P, Hundemer M, Schmitt A, Witzens-Harig M, Pavel P, Hillengass J et al (2017) Performance assessment and benchmarking of autologous peripheral blood stem cell collection with two different apheresis devices. Transfus Med 27(1):36–42

    Article  CAS  PubMed  Google Scholar 

  65. Lisenko K, Baertsch MA, Meiser R, Pavel P, Bruckner T, Kriegsmann M et al (2017) Comparison of biosimilar filgrastim, originator filgrastim, and lenograstim for autologous stem cell mobilization in patients with multiple myeloma. Transfusion 57(10):2359–2365

    Article  CAS  PubMed  Google Scholar 

  66. Lisenko K, Pavel P, Bruckner T, Puthenparambil J, Hundemer M, Schmitt A et al (2017) Comparison between intermittent and continuous spectra optia leukapheresis systems for autologous peripheral blood stem cell collection. J Clin Apher 32(1):27–34

    Article  PubMed  Google Scholar 

  67. Rosenbaum ER, O’Connell B, Cottler-Fox M (2012) Validation of a formula for predicting daily CD34(+) cell collection by leukapheresis. Cytotherapy 14(4):461–466

    Article  CAS  PubMed  Google Scholar 

  68. Rosenbaum ER, Wuchter P, Hundemer M, Pavel P, Witzens-Harig M, Goldschmidt H et al (2014) Validation of a predictive formula for collection of hematopoietic progenitor cells (HPC) By leukapheresis at 2 institutions using 4 different machine protocols. Blood 124(21):2458

    Google Scholar 

  69. Brauninger S, Bialleck H, Thorausch K, Felt T, Seifried E, Bonig H (2012) Allogeneic donor peripheral blood "stem cell" apheresis: prospective comparison of two apheresis systems. Transfusion 52(5):1137–1145

    Article  PubMed  Google Scholar 

  70. Flommersfeld S, Bakchoul T, Bein G, Wachtel A, Loechelt C, Sachs UJ (2013) A single center comparison between three different apheresis systems for autologous and allogeneic stem cell collections. Transfus Apher Sci 49(3):428–433

    Article  PubMed  Google Scholar 

  71. Reinhardt P, Brauninger S, Bialleck H, Thorausch K, Smith R, Schrezenmeier H et al (2011) Automatic interface-controlled apheresis collection of stem/progenitor cells: results from an autologous donor validation trial of a novel stem cell apheresis device. Transfusion 51(6):1321–1330

    Article  PubMed  Google Scholar 

  72. Cousins AF, Sinclair JE, Alcorn MJ (2015) R HAG, Douglas KW. HPC-A dose prediction on the optia(R) cell separator based on a benchmark CE2 collection efficiency: Promoting clinical efficiency, minimizing toxicity, and allowing quality control. J Clin Apher 30(6):321–328

    Article  PubMed  Google Scholar 

  73. Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P et al (2015) Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplant 50(4):476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leemhuis T, Padley D, Keever-Taylor C, Niederwieser D, Teshima T, Lanza F et al (2014) Essential requirements for setting up a stem cell processing laboratory. Bone Marrow Transplant 49(8):1098–1105

    Article  PubMed  Google Scholar 

  75. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472

    Article  PubMed  PubMed Central  Google Scholar 

  76. Veeraputhiran M, Theus JW, Pesek G, Barlogie B, Cottler-Fox M (2010) Viability and engraftment of hematopoietic progenitor cells after long-term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration. Cytotherapy 12(6):764–766

    Article  CAS  PubMed  Google Scholar 

  77. Detry G, Calvet L, Straetmans N, Cabrespine A, Ravoet C, Bay JO et al (2014) Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at - 80 degrees C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant 49(6):780–785

    Article  CAS  PubMed  Google Scholar 

  78. Watts MJ, Sullivan AM, Ings SJ, Barlow M, Devereux S, Goldstone AH et al (1998) Storage of PBSC at −80 °C. Bone Marrow Transplant 21(1):111–112

    Article  CAS  PubMed  Google Scholar 

  79. Katayama Y, Yano T, Bessho A, Deguchi S, Sunami K, Mahmut N et al (1997) The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. Bone Marrow Transplant 19(3):283–287

    Article  CAS  PubMed  Google Scholar 

  80. Fernyhough LJ, Buchan VA, McArthur LT, Hock BD (2013) Relative recovery of haematopoietic stem cell products after cryogenic storage of up to 19 years. Bone Marrow Transplant 48(1):32–35

    Article  CAS  PubMed  Google Scholar 

  81. McCullough J, Haley R, Clay M, Hubel A, Lindgren B, Moroff G (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50(4):808–819

    Article  PubMed  Google Scholar 

  82. Spurr EE, Wiggins NE, Marsden KA, Lowenthal RM, Ragg SJ (2002) Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14 years) cryostorage. Cryobiology 44(3):210–217

    Article  PubMed  Google Scholar 

  83. Valeri CR, Pivacek LE (1996) Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Transfusion 36(4):303–308

    Article  CAS  PubMed  Google Scholar 

  84. Abbruzzese L, Agostini F, Durante C, Toffola RT, Rupolo M, Rossi FM et al (2013) Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation. Vox Sang 105(1):77–80

    Article  CAS  PubMed  Google Scholar 

  85. Liseth K, Ersvaer E, Abrahamsen JF, Nesthus I, Ryningen A, Bruserud O (2009) Long-term cryopreservation of autologous stem cell grafts: a clinical and experimental study of hematopoietic and immunocompetent cells. Transfusion 49(8):1709–1719

    Article  CAS  PubMed  Google Scholar 

  86. Aird W, Labopin M, Gorin NC, Antin JH (1992) Long-term cryopreservation of human stem cells. Bone Marrow Transplant 9(6):487–490

    CAS  PubMed  Google Scholar 

  87. Al-Anazi KA (2012) Autologous hematopoietic stem cell transplantation for multiple myeloma without cryopreservation. Bone Marrow Res 2012:917361

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fruehauf S, Klaus J, Huesing J, Veldwijk MR, Buss EC, Topaly J et al (2007) Efficient mobilization of peripheral blood stem cells following CAD chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 39(12):743–750

    Article  CAS  PubMed  Google Scholar 

  89. Breitkreutz I, Lokhorst HM, Raab MS, Holt B, Cremer FW, Herrmann D et al (2007) Thalidomide in newly diagnosed multiple myeloma: influence of thalidomide treatment on peripheral blood stem cell collection yield. Leukemia 21(6):1294–1299

    Article  CAS  PubMed  Google Scholar 

  90. Lisenko K, Wuchter P, Hansberg M, Mangatter A, Benner A, Ho AD et al (2017) Comparison of different stem cell mobilization regimens in AL amyloidosis patients. Biol Blood Marrow Transplant 23(11):1870–1878

    Article  PubMed  Google Scholar 

  91. Worel N, Schulenburg A, Mitterbauer M, Keil F, Rabitsch W, Kalhs P et al (2006) Autologous stem-cell transplantation in progressing amyloidosis is associated with severe transplant-related toxicity. Wien Klin Wochenschr 118(1–2):49–53

    Article  PubMed  Google Scholar 

  92. Perotti C, Del Fante C, Viarengo G, Perlini S, Vezzoli M, Rodi G et al (2005) Peripheral blood progenitor cell mobilization and collection in 42 patients with primary systemic amyloidosis. Transfusion 45(11):1729–1734

    Article  CAS  PubMed  Google Scholar 

  93. Gertz MA, Lacy MQ, Gastineau DA, Inwards DJ, Chen MG, Tefferi A et al (2000) Blood stem cell transplantation as therapy for primary systemic amyloidosis (AL). Bone Marrow Transplant 26(9):963–969

    Article  CAS  PubMed  Google Scholar 

  94. Blank N, Lisenko K, Pavel P, Bruckner T, Ho AD, Wuchter P (2016) Low-dose cyclophosphamide effectively mobilizes peripheral blood stem cells in patients with autoimmune disease. Eur J Haematol 97(1):78–82

    Article  CAS  PubMed  Google Scholar 

  95. Endo T, Sato N, Mogi Y, Koizumi K, Nishio M, Fujimoto K et al (2004) Peripheral blood stem cell mobilization following CHOP plus rituximab therapy combined with G-CSF in patients with B-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 33(7):703–707

    Article  CAS  PubMed  Google Scholar 

  96. Shi Y, Zhou P, Han X, He X, Zhou S, Liu P et al (2015) Autologous peripheral blood stem cell mobilization following dose-adjusted cyclophosphamide, doxorubicin, vincristine, and prednisolone chemotherapy alone or in combination with rituximab in treating high-risk non-Hodgkin’s lymphoma. Chin J Cancer 34(11):522–530

    CAS  PubMed  Google Scholar 

  97. Takeyama K, Ogura M, Morishima Y, Kasai M, Kiyama Y, Ohnishi K et al (2003) A dose-finding study of glycosylated G-CSF (Lenograstim) combined with CHOP therapy for stem cell mobilization in patients with non-Hodgkin’s lymphoma. Jpn J Clin Oncol 33(2):78–85

    Article  PubMed  Google Scholar 

  98. Lisenko K, Cremer M, Schwarzbich MA, Kriegsmann M, Ho AD, Witzens-Harig M et al (2016) Efficient stem cell collection after modified cisplatin-based mobilization chemotherapy in patients with diffuse large B cell lymphoma. Biol Blood Marrow Transplant 22(8):1397–1402

    Article  CAS  PubMed  Google Scholar 

  99. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M et al (2010) Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28(27):4184–4190

    Article  PubMed  PubMed Central  Google Scholar 

  100. Smardova L, Engert A, Haverkamp H, Raemakers J, Baars J, Pfistner B et al (2005) Successful mobilization of peripheral blood stem cells with the DHAP regimen (dexamethasone, cytarabine, cisplatinum) plus granulocyte colony-stimulating factor in patients with relapsed Hodgkin’s disease. Leuk Lymphoma 46(7):1017–1022

    Article  CAS  PubMed  Google Scholar 

  101. Pavone V, Gaudio F, Guarini A, Perrone T, Zonno A, Curci P et al (2002) Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant 29(4):285–290

    Article  CAS  PubMed  Google Scholar 

  102. Russell N, Mesters R, Schubert J, Boogaerts M, Johnsen HE, Canizo CD et al (2008) A phase 2 pilot study of pegfilgrastim and filgrastim for mobilizing peripheral blood progenitor cells in patients with non-Hodgkin’s lymphoma receiving chemotherapy. Haematologica 93(3):405–412

    Article  CAS  PubMed  Google Scholar 

  103. Kewalramani T, Zelenetz AD, Nimer SD, Portlock C, Straus D, Noy A et al (2004) Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 103(10):3684–3688

    Article  CAS  PubMed  Google Scholar 

  104. Zelenetz AD, Hamlin P, Kewalramani T, Yahalom J, Nimer S, Moskowitz CH (2003) Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin’s lymphoma. Ann Oncol 14(Suppl 1):i5–i10

    Article  PubMed  Google Scholar 

  105. Kingreen D, Beyer J, Kleiner S, Reif S, Huhn D, Siegert W (2001) ICE--an efficient drug combination for stem cell mobilization and high-dose treatment of malignant lymphoma. Eur J Haematol Suppl 64:46–50

    CAS  PubMed  Google Scholar 

  106. Illerhaus G, Marks R, Ihorst G, Guttenberger R, Ostertag C, Derigs G et al (2006) High-dose chemotherapy with autologous stem-cell transplantation and hyperfractionated radiotherapy as first-line treatment of primary CNS lymphoma. J Clin Oncol 24(24):3865–3870

    Article  CAS  PubMed  Google Scholar 

  107. Necchi A, Nicolai N, Mariani L, Raggi D, Fare E, Giannatempo P et al (2013) Modified cisplatin, etoposide, and ifosfamide (PEI) salvage therapy for male germ cell tumors: long-term efficacy and safety outcomes. Ann Oncol 24(11):2887–2892

    Article  CAS  PubMed  Google Scholar 

  108. Harstrick A, Schmoll HJ, Wilke H, Kohne-Wompner CH, Stahl M, Schober C et al (1991) Cisplatin, etoposide, and ifosfamide salvage therapy for refractory or relapsing germ cell carcinoma. J Clin Oncol 9(9):1549–1555

    Article  CAS  PubMed  Google Scholar 

  109. Voss MH, Feldman DR, Motzer RJ (2011) High-dose chemotherapy and stem cell transplantation for advanced testicular cancer. Expert Rev Anticancer Ther 11(7):1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hildebrandt M, Rick O, Salama A, Siegert W, Huhn D, Beyer J (2000) Detection of germ-cell tumor cells in peripheral blood progenitor cell harvests: impact on clinical outcome. Clin Cancer Res 6(12):4641–4646

    CAS  PubMed  Google Scholar 

  111. Schwella N, Beyer J, Schwaner I, Heuft HG, Rick O, Huhn D et al (1996) Impact of preleukapheresis cell counts on collection results and correlation of progenitor-cell dose with engraftment after high-dose chemotherapy in patients with germ cell cancer. J Clin Oncol 14(4):1114–1121

    Article  CAS  PubMed  Google Scholar 

  112. Siegert W, Beyer J, Strohscheer I, Baurmann H, Oettle H, Zingsem J et al (1994) High-dose treatment with carboplatin, etoposide, and ifosfamide followed by autologous stem-cell transplantation in relapsed or refractory germ cell cancer: a phase I/II study. The German Testicular Cancer Cooperative Study Group. J Clin Oncol 12(6):1223–1231

    Article  CAS  PubMed  Google Scholar 

  113. Waterman J, Rybicki L, Bolwell B, Copelan E, Pohlman B, Sweetenham J et al (2012) Fludarabine as a risk factor for poor stem cell harvest, treatment-related MDS and AML in follicular lymphoma patients after autologous hematopoietic cell transplantation. Bone Marrow Transplant 47(4):488–493

    Article  CAS  PubMed  Google Scholar 

  114. Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia P et al (2009) Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome. A retrospective analysis on 2177 patients from three major Italian institutions. Transfus Apher Sci 41(1):33–37

    Article  PubMed  Google Scholar 

  115. Mendrone A Jr, Arrais CA, Saboya R, Chamone Dde A, Dulley FL (2008) Factors affecting hematopoietic progenitor cell mobilization: an analysis of 307 patients. Transfus Apher Sci 39(3):187–192

    Article  PubMed  Google Scholar 

  116. Janikova A, Koristek Z, Vinklarkova J, Pavlik T, Sticha M, Navratil M et al (2009) Efficacious but insidious: a retrospective analysis of fludarabine-induced myelotoxicity using long-term culture-initiating cells in 100 follicular lymphoma patients. Exp Hematol 37(11):1266–1273

    Article  CAS  PubMed  Google Scholar 

  117. Popat U, Saliba R, Thandi R, Hosing C, Qazilbash M, Anderlini P et al (2009) Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15(6):718–723

    Article  PubMed  PubMed Central  Google Scholar 

  118. Mazumder A, Kaufman J, Niesvizky R, Lonial S, Vesole D, Jagannath S (2008) Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 22(6):1280–1281. author reply 1-2

    Article  CAS  PubMed  Google Scholar 

  119. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21(9):2035–2042

    Article  CAS  PubMed  Google Scholar 

  120. Nakasone H, Kanda Y, Ueda T, Matsumoto K, Shimizu N, Minami J et al (2009) Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma. Am J Hematol 84(12):809–814

    Article  CAS  PubMed  Google Scholar 

  121. Lanza F, Lemoli RM, Olivieri A, Laszlo D, Martino M, Specchia G et al (2014) Factors affecting successful mobilization with plerixafor: an Italian prospective survey in 215 patients with multiple myeloma and lymphoma. Transfusion 54(2):331–339

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Wuchter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kriegsmann, K., Wuchter, P. (2019). Mobilization and Collection of Peripheral Blood Stem Cells in Adults: Focus on Timing and Benchmarking. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation