Production and Characterization of Chemically Cross-Linked Collagen Scaffolds

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

Chemical cross-linking of collagen-based devices is used as a means of increasing the mechanical stability and control the degradation rate upon implantation. Herein, we describe techniques to produce cross-linked with glutaraldehyde (GTA; amine terminal cross-linker), 4-arm polyethylene glycol succinimidyl glutarate (4SP; amine terminal cross-linker), diphenyl phosphoryl azide (DPPA; carboxyl terminal cross-linker), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC; carboxyl terminal cross-linker) collagen films. In addition, we provide protocols to characterize the biophysical (swelling), biomechanical (tensile), and biological (metabolic activity, proliferation and viability using human dermal fibroblasts and THP-1 macrophages) properties of the cross-linked collagen scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gelse K, Poschl E, Aigner T (2003) Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    CAS  PubMed  Google Scholar 

  2. Brodsky B, Ramshaw JA (1997) The collagen triple-helix structure. Matrix Biol 15(8–9):545–554

    CAS  PubMed  Google Scholar 

  3. Smith-Mungo LI, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16(7):387–398

    CAS  PubMed  Google Scholar 

  4. Yamauchi M, Taga Y, Hattori S, Shiiba M, Terajima M (2018) Analysis of collagen and elastin cross-links. Methods Cell Biol 143:115–132. https://doi.org/10.1016/bs.mcb.2017.08.006

    PubMed  Google Scholar 

  5. Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW (1994) Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43(5):676–683

    CAS  PubMed  Google Scholar 

  6. Reddy GK (2004) Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. Exp Diabesity Res 5(2):143–153. https://doi.org/10.1080/15438600490277860

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5(15):3071–3077

    CAS  PubMed  Google Scholar 

  8. Bailey AJ, Light ND, Atkins ED (1980) Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre. Nature 288(5789):408–410

    CAS  Google Scholar 

  9. Orgel JP, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A 103(24):9001–9005. https://doi.org/10.1073/pnas.0502718103

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344. https://doi.org/10.1002/bip.20871

    CAS  PubMed  Google Scholar 

  11. Cliche S, Amiot J, Avezard C, Gariepy C (2003) Extraction and characterization of collagen with or without telopeptides from chicken skin. Poult Sci 82(3):503–509. https://doi.org/10.1093/ps/82.3.503

    CAS  PubMed  Google Scholar 

  12. Friess W (1998) Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 45(2):113–136

    CAS  PubMed  Google Scholar 

  13. Charulatha V, Rajaram A (2003) Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 24(5):759–767

    CAS  PubMed  Google Scholar 

  14. Zeugolis DI, Paul GR, Attenburrow G (2009) Cross-linking of extruded collagen fibers -- a biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A 89(4):895–908. https://doi.org/10.1002/jbm.a.32031

    CAS  PubMed  Google Scholar 

  15. Weadock K, Olson RM, Silver FH (1983) Evaluation of collagen crosslinking techniques. Biomater Med Devices Artif Organs 11(4):293–318

    PubMed  Google Scholar 

  16. Jorge-Herrero E, Fernandez P, Turnay J, Olmo N, Calero P, Garcia R, Freile I, Castillo-Olivares JL (1999) Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 20(6):539–545

    CAS  PubMed  Google Scholar 

  17. van Wachem PB, Zeeman R, Dijkstra PJ, Feijen J, Hendriks M, Cahalan PT, van Luyn MJ (1999) Characterization and biocompatibility of epoxy-crosslinked dermal sheep collagens. J Biomed Mater Res 47(2):270–277

    PubMed  Google Scholar 

  18. Haugh MG, Jaasma MJ, O'Brien FJ (2009) The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A 89(2):363–369. https://doi.org/10.1002/jbm.a.31955

    CAS  PubMed  Google Scholar 

  19. Wess TJ, Orgel JP (2000) Changes in collagen structure: drying, dehydrothermal treatment and relation to long term deterioration. Thermochim Acta 365(1-2):119–128. https://doi.org/10.1016/S0040-6031(00)00619-5

    CAS  Google Scholar 

  20. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG (1995) Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 29(11):1373–1379. https://doi.org/10.1002/jbm.820291108

    CAS  PubMed  Google Scholar 

  21. Torres DS, Freyman TM, Yannas IV, Spector M (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–1619

    CAS  PubMed  Google Scholar 

  22. Chen RN, Ho HO, Sheu MT (2005) Characterization of collagen matrices crosslinked using microbial transglutaminase. Biomaterials 26(20):4229–4235. https://doi.org/10.1016/j.biomaterials.2004.11.012

    CAS  PubMed  Google Scholar 

  23. Stachel I, Schwarzenbolz U, Henle T, Meyer M (2010) Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules 11(3):698–705. https://doi.org/10.1021/bm901284x

    CAS  PubMed  Google Scholar 

  24. Zeugolis DI, Panengad PP, Yew ES, Sheppard C, Phan TT, Raghunath M (2010) An in situ and in vitro investigation for the transglutaminase potential in tissue engineering. J Biomed Mater Res A 92(4):1310–1320. https://doi.org/10.1002/jbm.a.32383

    CAS  PubMed  Google Scholar 

  25. Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA (2004) Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res A 68(4):756–762. https://doi.org/10.1002/jbm.a.20110

    CAS  PubMed  Google Scholar 

  26. Moshnikova AB, Afanasyev VN, Proussakova OV, Chernyshov S, Gogvadze V, Beletsky IP (2006) Cytotoxic activity of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide is underlain by DNA interchain cross-linking. Cell Mol Life Sci 63(2):229–234. https://doi.org/10.1007/s00018-005-5383-x

    CAS  PubMed  Google Scholar 

  27. Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14(6):753–764. https://doi.org/10.1002/Jbm.820140607

    CAS  PubMed  Google Scholar 

  28. Gough JE, Scotchford CA, Downes S (2002) Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 61(1):121–130. https://doi.org/10.1002/jbm.10145

    CAS  PubMed  Google Scholar 

  29. Hass V, Luque-Martinez IV, Gutierrez MF, Moreira CG, Gotti VB, Feitosa VP, Koller G, Otuki MF, Loguercio AD, Reis A (2016) Collagen cross-linkers on dentin bonding: stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent Mater 32(6):732–741. https://doi.org/10.1016/j.dental.2016.03.008

    CAS  PubMed  Google Scholar 

  30. Delgado LM, Bayon Y, Pandit A, Zeugolis DI (2015) To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B 21(3):298–313. https://doi.org/10.1089/ten.TEB.2014.0290

    CAS  Google Scholar 

  31. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987. https://doi.org/10.1016/j.actbio.2011.11.031

    CAS  PubMed  Google Scholar 

  32. McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael Lee J (2013) Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater 9(7):7191–7199. https://doi.org/10.1016/j.actbio.2013.02.021

    CAS  PubMed  Google Scholar 

  33. Orenstein SB, Qiao Y, Klueh U, Kreutzer DL, Novitsky YW (2010) Activation of human mononuclear cells by porcine biologic meshes in vitro. Hernia 14(4):401–407. https://doi.org/10.1007/s10029-010-0634-7

    CAS  PubMed  Google Scholar 

  34. Witherel CE, Graney PL, Freytes DO, Weingarten MS, Spiller KL (2016) Response of human macrophages to wound matrices in vitro. Wound Repair Regen 24(3):514–524. https://doi.org/10.1111/wrr.12423

    PubMed  Google Scholar 

  35. Delgado LM, Fuller K, Zeugolis DI (2017) Collagen cross-linking: biophysical, biochemical, and biological response analysis. Tissue Eng Part A 23(19–20):1064–1077. https://doi.org/10.1089/ten.TEA.2016.0415

    CAS  PubMed  Google Scholar 

  36. Lotz C, Schmid FF, Oechsle E, Monaghan MG, Walles H, Groeber-Becker F (2017) Cross-linked collagen hydrogel matrix resisting contraction to facilitate full-thickness skin equivalents. ACS Appl Mater Interfaces 9(24):20417–20425. https://doi.org/10.1021/acsami.7b04017

    CAS  PubMed  Google Scholar 

  37. Monaghan M, Browne S, Schenke-Layland K, Pandit A (2014) A collagen-based scaffold delivering exogenous microRNA-29B to modulate extracellular matrix remodeling. Mol Ther 22(4):786–796. https://doi.org/10.1038/mt.2013.288

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanami M, Sweeney I, Shtein Z, Meirovich S, Sorushanova A, Mullen A, Miraftab M, Shoseyov O, O'Dowd C, Pandit A, Zeugolis D (2016) The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers. J Biomed Mater Res B 104(5):914–922

    CAS  Google Scholar 

  39. Marinucci L, Lilli C, Guerra M, Belcastro S, Becchetti E, Stabellini G, Calvi EM, Locci P (2003) Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study. J Biomed Mater Res A 67A(2):504–509. https://doi.org/10.1002/jbm.a.10082

    CAS  Google Scholar 

  40. Petite H, Frei V, Huc A, Herbage D (1994) Use of diphenylphosphorylazide for cross-linking collagen-based biomaterials. J Biomed Mater Res 28(2):159–165. https://doi.org/10.1002/Jbm.820280204

    CAS  PubMed  Google Scholar 

  41. Capella-Monsonís H, Coentro J, Graceffa V, Wu Z, Zeugolis D (2018) An experimental toolbox for characterization of mammalian collagen type I in biological specimens. Nat Protoc 13(3):507–529

    PubMed  Google Scholar 

  42. Coentro J, Capella-Monsonís H, Graceffa V, Wu Z, Mullen A, Raghunath M, Zeugolis D (2017) Collagen quantification in tissue specimens. Methods Mol Biol 1627:341–350

    CAS  PubMed  Google Scholar 

  43. Lareu R, Zeugolis D, Abu-Rub M, Pandit A, Raghunath M (2010) Essential modification of the Sircol collagen assay for the accurate quantification of collagen content in complex protein solutions. Acta Biomater 6(8):3146–3151

    CAS  PubMed  Google Scholar 

  44. Zeugolis D, Li B, Lareu R, Chan C, Raghunath M (2008) Collagen solubility testing, a quality assurance step for reproducible electro-spun nano-fibre fabrication. A technical note. J Biomater Sci Polym Ed 19(10):1307–1317

    CAS  PubMed  Google Scholar 

  45. Zeugolis D, Raghunath M (2010) The physiological relevance of wet versus dry differential scanning calorimetry for biomaterial evaluation: a technical note. Polym Int 59(10):1403–1407

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Science Foundation Ireland, Career Development Award Programme (grant agreement number: 15/CDA/3629); Science Foundation Ireland and the European Regional Development Fund (grant agreement number: 13/RC/2073); and EU H2020, ITN award, Tendon Therapy Train Project (grant agreement number: 676338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios I. Zeugolis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sallent, I., Capella-Monsonís, H., Zeugolis, D.I. (2019). Production and Characterization of Chemically Cross-Linked Collagen Scaffolds. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation