Discriminating Strains of Self-Propagating Protein Aggregates Using a Conformational Stability Assay

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

Prions and other self-propagating protein aggregates can exist as distinct strains, which are thought to represent different conformations of aggregates. There is growing evidence that protein aggregate strains may be important for understanding the biology of common neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. While methodology for discriminating prion strains is in widespread use, there is a paucity of tools for comparing the conformational properties of aggregates composed of β-amyloid (Aβ) peptide or α-synuclein protein, particularly when present in complex samples such as brain extracts. The conformational stability assay (CSA) is a simple technique that measures the relative resistance of protein aggregates to chemical denaturation. While originally developed to differentiate prion strains, the CSA has since been adapted for use with other protein aggregates. Here, we describe the CSA in detail and outline its utility for distinguishing prion strains as well as unique conformational states of Aβ and α-synuclein aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prusiner SB (2012) A unifying role for prions in neurodegenerative diseases. Science 336:1511–1513

    Article  CAS  PubMed  Google Scholar 

  2. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  CAS  PubMed  Google Scholar 

  3. Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20(2):130–138

    Article  CAS  PubMed  Google Scholar 

  4. Goedert M (2015) NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349(6248):1255555

    Article  Google Scholar 

  5. Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:a006833

    Article  PubMed  Google Scholar 

  6. Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893

    Article  CAS  PubMed  Google Scholar 

  7. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790

    Article  CAS  Google Scholar 

  8. Hardy J, Revesz T (2012) The spread of neurodegenerative disease. N Engl J Med 366:2126–2128

    Article  CAS  Google Scholar 

  9. Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38:87–103

    Article  CAS  PubMed  Google Scholar 

  10. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936

    Article  CAS  Google Scholar 

  11. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  CAS  Google Scholar 

  12. Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106:7443–7448

    Article  CAS  PubMed  Google Scholar 

  13. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    Article  CAS  Google Scholar 

  14. Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarstrom P, Nilsson KP, Jucker M (2013) Seeded strain-like transmission of beta-amyloid morphotypes in APP transgenic mice. EMBO Rep 14(11):1017–1022

    Article  CAS  PubMed  Google Scholar 

  15. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci U S A 111(28):10323–10328

    Article  CAS  PubMed  Google Scholar 

  16. Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M, DeArmond SJ, Giles K, DeGrado WF, Prusiner SB (2014) Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 111(28):10329–10334

    Article  CAS  PubMed  Google Scholar 

  17. Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M, Cohen Y, Chen W, Blevins J, Appleby BS, Surewicz K, Surewicz WK, Sajatovic M, Tatsuoka C, Zhang S, Mayo P, Butkiewicz M, Haines JL, Lerner AJ, Safar JG (2015) Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138(Pt 4):1009–1022

    Article  PubMed  Google Scholar 

  18. Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117

    Article  CAS  Google Scholar 

  19. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Bockmann A, Meier BH, Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575

    Article  PubMed  Google Scholar 

  20. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560

    Article  CAS  PubMed  Google Scholar 

  21. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V (2015) alpha-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522(7556):340–344

    Article  CAS  Google Scholar 

  22. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317

    Article  CAS  PubMed  Google Scholar 

  23. Peretz D, Scott M, Groth D, Williamson A, Burton D, Cohen FE, Prusiner SB (2001) Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10:854–863

    Article  CAS  PubMed  Google Scholar 

  24. Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton D, DeArmond SJ, Prusiner SB, Scott MR (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34:921–932

    Article  CAS  Google Scholar 

  25. Legname G, Nguyen H-OB, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103:19105–19110

    Article  CAS  PubMed  Google Scholar 

  26. Watts JC, Giles K, Patel S, Oehler A, Dearmond SJ, Prusiner SB (2014) Evidence That bank vole PrP is a universal acceptor for prions. PLoS Pathog 10(4):e1003990

    Article  PubMed  Google Scholar 

  27. Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, Balachandran A, McKenzie D, Castilla J, Soto C, Jewell J, Graham C, Hoover EA, Telling GC (2010) Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328:1154–1158

    Article  CAS  PubMed  Google Scholar 

  28. Safar JG, Scott M, Monaghan J, Deering C, Didorenko S, Vergara J, Ball H, Legname G, Leclerc E, Solforosi L, Serban H, Groth D, Burton DR, Prusiner SB, Williamson RA (2002) Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nat Biotechnol 20:1147–1150

    Article  CAS  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  30. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  CAS  Google Scholar 

  31. Lee BR, Kamitani T (2011) Improved immunodetection of endogenous α-synuclein. PLoS One 6:e23939

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel C. Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lau, H.H.C., Lau, A., Watts, J.C. (2018). Discriminating Strains of Self-Propagating Protein Aggregates Using a Conformational Stability Assay. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation