Cell Line Models of Molecular Subtypes of Colorectal Cancer

  • Protocol
  • First Online:
Colorectal Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1765))

Abstract

Colorectal cancer (CRC) is a genetically diverse disease necessitating the need for well-characterized and reproducible models to enable its accurate investigation. Recent genomic analyses have confirmed that CRC cell lines accurately retain the key genetic alterations and represent the major molecular subtypes of primary CRC, underscoring their value as powerful preclinical models. In this chapter we detail the important issues to consider when using CRC cell lines, the techniques used for their appropriate molecular classification, and the methods by which they are cultured in vitro and as subcutaneous xenografts in immune-compromised mice. A panel of commonly available CRC cell lines that have been characterized for key molecular subtypes is also provided as a resource for investigators to select appropriate models to address specific research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shibata D, Peinado MA, lonov Y et al (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6(3):273–281

    Article  CAS  PubMed  Google Scholar 

  2. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627

    Article  CAS  PubMed  Google Scholar 

  3. Issa J-P (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993

    Article  CAS  PubMed  Google Scholar 

  4. Bellam N, Pasche B (2010) TGF-β signaling alterations and colon cancer. In: Pasche B (ed) Cancer genetics. Springer, Boston, MA, pp 85–103. https://doi.org/10.1007/978-1-4419-6033-7_5

    Chapter  Google Scholar 

  5. Cathomas G (2014) PIK3CA in colorectal cancer. Front Oncol 4:35. https://doi.org/10.3389/fonc.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  6. Colussi D, Brandi G, Bazzoli F et al (2013) Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 14(8):16365–16385. https://doi.org/10.3390/ijms140816365

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barras D (2015) BRAF mutation in colorectal cancer: an update. Biomark Cancer 7(Suppl 1):9–12. https://doi.org/10.4137/bic.s25248

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morkel M, Riemer P, Bläker H et al (2015) Similar but different: distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget 6(25):20785–20800

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356. https://doi.org/10.1038/nm.3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young L, Sung J, Stacey G et al (2010) Detection of mycoplasma in cell cultures. Nat Protoc 5(5):929–934

    Article  CAS  PubMed  Google Scholar 

  11. Tögel L, Nightingale R, Chueh AC et al (2016) Dual targeting of bromodomain and extraterminal domain proteins, and WNT or MAPK signaling, inhibits c-MYC expression and proliferation of colorectal cancer cells. Mol Cancer Ther 15(6):1217

    Article  PubMed  Google Scholar 

  12. Shin J, Carr A, Corner GA et al (2014) The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a kruppel-like factor 5 (KLF5)-dependent manner. J Biol Chem 289(36):25306–25316. https://doi.org/10.1074/jbc.M114.557546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson AJ, Chueh AC, Tögel L et al (2010) A coordinated Sp1/Sp3-mediated transcriptional response involving immediate-early gene induction is linked to HDAC inhibitor-induced apoptosis in colon cancer cells. Cancer Res 70(2):609–620. https://doi.org/10.1158/0008-5472.CAN-09-2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butler JM (2007) Short tandem repeat ty** technologies used in human identity testing. BioTechniques 43(4):ii–iv

    Article  PubMed  Google Scholar 

  15. Nikfarjam L, Farzaneh P (2012) Prevention and detection of mycoplasma contamination in cell culture. Cell J 13(4):203–212

    PubMed  Google Scholar 

  16. Bacher JW, Flanagan LA, Smalley RL et al (2004) Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis Markers 20(4–5):237–250

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eads CA, Danenberg KD, Kawakami K et al (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33(21):6823–6836. https://doi.org/10.1093/nar/gki987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu H, Bock C, Mikkelsen TS et al (2010) Genome-scale DNA methylation map** of clinical samples at single-nucleotide resolution. Nat Methods 7(2):133–136. https://doi.org/10.1038/nmeth.1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6):e41. https://doi.org/10.1093/nar/gkm013

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jasmine F, Rahaman R, Roy S et al (2012) Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue. BMC Res Notes 5:117. https://doi.org/10.1186/1756-0500-5-117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787–793. https://doi.org/10.1038/ng1834

    Article  CAS  PubMed  Google Scholar 

  23. Nosho K, Irahara N, Shima K et al (2008) Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 3(11):e3698. https://doi.org/10.1371/journal.pone.0003698

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ogino S, Kawasaki T, Brahmandam M et al (2006) Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 8(2):209–217. https://doi.org/10.2353/jmoldx.2006.050135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenoty** colorectal tumors. J Clin Oncol 20(4):1043–1048. https://doi.org/10.1200/JCO.2002.20.4.1043

    Article  CAS  PubMed  Google Scholar 

  26. Shi C, Washington K (2012) Molecular testing in colorectal cancer: diagnosis of lynch syndrome and personalized cancer medicine. Am J Clin Pathol 137(6):847–859. https://doi.org/10.1309/AJCPI83DINULUJNI

    Article  CAS  PubMed  Google Scholar 

  27. Berg KD, Glaser CL, Thompson RE et al (2000) Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn 2(1):20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy KM, Zhang S, Geiger T et al (2006) Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn 8(3):305–311. https://doi.org/10.2353/jmoldx.2006.050092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sah S, Chen L, Houghton J et al (2013) Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies. Genome Med 5(8):77. https://doi.org/10.1186/gm481

    Article  PubMed  PubMed Central  Google Scholar 

  30. Simbolo M, Gottardi M, Corbo V et al (2013) DNA qualification workflow for next generation sequencing of histopathological samples. PLoS One 8(6):e62692. https://doi.org/10.1371/journal.pone.0062692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogino S, Kawasaki T, Kirkner GJ et al (2007) Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn 9(3):305–314. https://doi.org/10.2353/jmoldx.2007.060170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Mariadason .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Reference STR profiles and properties of 30 commonly used CRC cell lines

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mooi, J.K., Luk, I.Y., Mariadason, J.M. (2018). Cell Line Models of Molecular Subtypes of Colorectal Cancer. In: Beaulieu, JF. (eds) Colorectal Cancer. Methods in Molecular Biology, vol 1765. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7765-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7765-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7764-2

  • Online ISBN: 978-1-4939-7765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation