Telomere Length Shortening in Alzheimer’s Disease: Procedures for a Causal Investigation Using Single Nucleotide Polymorphisms in a Mendelian Randomization Study

  • Protocol
  • First Online:
Biomarkers for Alzheimer’s Disease Drug Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1750))

Abstract

Measuring the length of telomeres, repetitive nucleotide sequences cap** the chromosomes which shortens by each cell division, has become a popular way of attaining a marker of biological aging processes. Several observational studies have investigated the associations between telomere length and Alzheimer’s disease (AD) with the overall conclusion being shorter telomeres provide an increased risk for AD development. Here we present an alternative approach for addressing the topic where additional evidence on causality can be drawn. To do so, we include information on single nucleotide polymorphisms (SNPs) using nature’s own experiment with random segregation of alleles at conception. The protocol describes the full process of the so-called Mendelian Randomization by selecting appropriate SNPs for the analysis, discussing different data sources that can be used and inform about methods, assumptions and suitable software packages including Stata code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Needham BL, Rehkopf D, Adler N et al (2015) Leukocyte telomere length and mortality in the National Health and Nutrition Examination Survey, 1999–2002. Epidemiology 26(4):528–535. https://doi.org/10.1097/EDE.0000000000000299

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hochstrasser T, Marksteiner J, Humpel C (2012) Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol 47(2):160–163. https://doi.org/10.1016/j.exger.2011.11.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Honig LS, Kang MS, Schupf N et al (2012) Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 69(10):1332–1339. https://doi.org/10.1001/archneurol.2012.1541

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas P, NJ OC, Fenech M (2008) Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mech Ageing Dev 129(4):183–190. https://doi.org/10.1016/j.mad.2007.12.004

    Article  PubMed  CAS  Google Scholar 

  5. Lukens JN, Van Deerlin V, Clark CM et al (2009) Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer’s disease. Alzheimers Dement 5(6):463–469. https://doi.org/10.1016/j.jalz.2009.05.666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Boccardi V, Pelini L, Ercolani S et al (2015) From cellular senescence to Alzheimer’s disease: the role of telomere shortening. Ageing Res Rev 22:1–8. https://doi.org/10.1016/j.arr.2015.04.003

    Article  PubMed  CAS  Google Scholar 

  7. Lawlor DA, Harbord RM, Sterne JA et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  8. Zhan Y, Song C, Karlsson R et al (2015) Telomere length shortening and Alzheimer disease—a Mendelian randomization study. JAMA Neurol 72(October):1202–1203

    Article  PubMed  Google Scholar 

  9. Lawlor DA (2016) Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol 45(3):908–915. https://doi.org/10.1093/ije/dyw127

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burgess S (2014) Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol 43(3):922–929. https://doi.org/10.1093/ije/dyu005

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith GD, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22

    Article  PubMed  Google Scholar 

  12. Palmer TM, Sterne JA, Harbord RM et al (2011) Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 173(12):1392–1403. https://doi.org/10.1093/aje/kwr026. kwr026 [pii]

    Article  PubMed  Google Scholar 

  13. Fall T, Hagg S, Magi R et al (2013) The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med 10(6):e1001474. https://doi.org/10.1371/journal.pmed.1001474

    Article  PubMed  PubMed Central  Google Scholar 

  14. Codd V, Nelson CP, Albrecht E et al (2013) Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45(4):422–427., 427e421-422. https://doi.org/10.1038/ng.2528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Johnson T (2013) Gtx: Genetics Toolbox. 0.0.8 edn

    Google Scholar 

  16. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458. https://doi.org/10.1038/ng.2802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Burgess S, Scott RA, Timpson NJ et al (2015) Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30(7):543–552. https://doi.org/10.1007/s10654-015-0011-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665. https://doi.org/10.1002/gepi.21758

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burgess S, Davies NM, Thompson SG et al (2014) Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidimiology 25(6):877–885. https://doi.org/10.1097/EDE.0000000000000161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Hägg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhan, Y., Hägg, S. (2018). Telomere Length Shortening in Alzheimer’s Disease: Procedures for a Causal Investigation Using Single Nucleotide Polymorphisms in a Mendelian Randomization Study. In: Perneczky, R. (eds) Biomarkers for Alzheimer’s Disease Drug Development. Methods in Molecular Biology, vol 1750. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7704-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7704-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7703-1

  • Online ISBN: 978-1-4939-7704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation