Targeted Electrophysiological Recordings In Vivo in the Mouse Cerebellum

  • Protocol
  • First Online:
Extracellular Recording Approaches

Part of the book series: Neuromethods ((NM,volume 134))

  • 1369 Accesses

Abstract

Single-unit recordings in vivo are the unitary elements in the processing of the brain and as such essential in systems physiology to understand brain functioning. In the cerebellum, a structure with high levels of intrinsic activity, studying these elements in vivo in an awake animal is imperative to obtain information regarding the processing features of these units in action. In this chapter we address the rationale and the approach of recording electrophysiological activity in the cerebellum, particularly that of Purkinje cells, in vivo in the awake, active animal. In line with the develo** appreciation for the diversity within populations of the cells of the same type, there is a growing interest in the differentiation within the population of Purkinje cells. Here we describe a successful approach to analyzing the activity of two populations of Purkinje cells, which differ in connectivity and the expression of several genes. By driving the expression of a fluorescent marker with the promotor of one of the differentiating genes, the presence of a fluorescence signal could be used to recognize and approach Purkinje cells, while the intensity of the signal can be used as a marker to identify the two subpopulations. Finally, the drawbacks and the advantages of this technique are discussed and placed into a future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat’s striate cortex. J Physiol 148:574–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Welie I, Roth A, Ho SS, Komai S, Hausser M (2016) Conditional spike transmission mediated by electrical coupling ensures millisecond precision-correlated activity among interneurons in vivo. Neuron 90:810–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen S, Augustine GJ, Chadderton P (2016) The cerebellum linearly encodes whisker position during voluntary movement. elife 5:e10509

    PubMed  PubMed Central  Google Scholar 

  4. Margrie TW et al (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39:911–918

    Article  CAS  PubMed  Google Scholar 

  5. Komai S, Denk W, Osten P, Brecht M, Margrie TW (2006) Two-photon targeted patching (TPTP) in vivo. Nat Protoc 1:647–652

    Article  CAS  PubMed  Google Scholar 

  6. Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67

    Article  CAS  PubMed  Google Scholar 

  7. Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin, pp 180–336

    Book  Google Scholar 

  8. Kennedy A et al (2014) A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat Neurosci 17:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eccles J, Llinas R, Sasaki K (1964) Golgi cell inhibition in the cerebellar cortex. Nature 204:1265–1266

    Article  CAS  PubMed  Google Scholar 

  10. Eccles JC, Llinas R, Sasaki K (1966) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1:82–101

    CAS  PubMed  Google Scholar 

  11. Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359–390

    Article  PubMed  Google Scholar 

  13. Najafi F, Medina JF (2013) Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits 7:115

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  15. Winkelman B, Frens M (2006) Motor coding in floccular climbing fibers. J Neurophysiol 95:2342–2351

    Article  PubMed  Google Scholar 

  16. Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978:122–134

    Article  CAS  PubMed  Google Scholar 

  17. Andersen P, Eccles J, Voorhoeve PE (1963) Inhibitory synapses on somas of purkinje cells in the cerebellum. Nature 199:655–656

    Article  CAS  PubMed  Google Scholar 

  18. van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI (2013) High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding. Front Neural Circuits 7:95

    PubMed  PubMed Central  Google Scholar 

  19. Ruigrok TJ, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724

    Article  CAS  PubMed  Google Scholar 

  20. Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  21. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schonewille M et al (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ten Brinke MM et al (2015) Evolving models of pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep 13:1977–1988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609

    Article  CAS  PubMed  Google Scholar 

  26. Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635

    Article  CAS  PubMed  Google Scholar 

  27. Ito M, Yamaguchi K, Nagao S, Yamazaki T (2014) Long-term depression as a model of cerebellar plasticity. Prog Brain Res 210:1–30

    Article  PubMed  Google Scholar 

  28. Lisberger SG, Fuchs AF (1974) Response of flocculus Purkinje cells to adequate vestibular stimulation in the alert monkey: fixation vs. compensatory eye movements. Brain Res 69:347–353

    Article  CAS  PubMed  Google Scholar 

  29. Thier P, Dicke PW, Haas R, Barash S (2000) Encoding of movement time by populations of cerebellar Purkinje cells. Nature 405:72–76

    Article  CAS  PubMed  Google Scholar 

  30. Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411

    Article  CAS  PubMed  Google Scholar 

  31. Roy JE, Cullen KEA (1998) Neural correlate for vestibulo-ocular reflex suppression during voluntary eye-head gaze shifts. Nat Neurosci 1:404–410

    Article  CAS  PubMed  Google Scholar 

  32. Sato Y, Miura A, Fushiki H, Kawasaki T, Watanabe Y (1993) Complex spike responses of cerebellar Purkinje cells to constant velocity optokinetic stimuli in the cat flocculus. Acta Otolaryngol Suppl 504:13–16

    Article  CAS  PubMed  Google Scholar 

  33. Jorntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806

    Article  CAS  PubMed  Google Scholar 

  34. Yartsev MM, Givon-Mayo R, Maller M, Donchin O (2009) Pausing purkinje cells in the cerebellum of the awake cat. Front Syst Neurosci 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hesslow G (1994) Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. J Physiol Lond 476:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ekerot CF, Kano M (1989) Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res 6:264–268

    Article  CAS  PubMed  Google Scholar 

  37. Simpson JI, Alley KE (1974) Visual climbing fiber input to rabbit vestibulo-cerebellum: a source of direction-specific information. Brain Res 82:302–308

    Article  CAS  PubMed  Google Scholar 

  38. Yagi N, Chikamori Y, Matsuoka I (1977) Response of single Purkinje neurons in the flocculus of albino rabbits to caloric stimulation. Acta Otolaryngol 84:98–104

    Article  CAS  PubMed  Google Scholar 

  39. Miyashita Y (1984) Eye velocity responsiveness and its proprioceptive component in the floccular Purkinje cells of the alert pigmented rabbit. Exp Brain Res 55:81–90

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida M, Kondo H (2012) Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish. Behav Brain Funct 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sawtell NB, Williams A, Bell CC (2007) Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. J Neurosci 27:1552–1565

    Article  CAS  PubMed  Google Scholar 

  42. Wylie DR, Frost BJ (1991) Purkinje cells in the vestibulocerebellum of the pigeon respond best to either translational or rotational wholefield visual motion. Exp Brain Res 86:229–232

    Article  CAS  PubMed  Google Scholar 

  43. Llinas R, Bloedel JR, Hillman DE (1969) Functional characterization of neuronal circuitry of frog cerebellar cortex. J Neurophysiol 32:847–870

    CAS  PubMed  Google Scholar 

  44. **ao J et al (2014) Systematic regional variations in Purkinje cell spiking patterns. PLoS One 9:e105633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shin SL et al (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2:e485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hesslow G, Ivarsson M (1994) Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport 5:649–652

    Article  CAS  PubMed  Google Scholar 

  47. Lou JS, Bloedel JR (1986) The responses of simultaneously recorded Purkinje cells to the perturbations of the step cycle in the walking ferret: a study using a new analytical method—the real-time postsynaptic response (RTPR). Brain Res 365:340–344

    Article  CAS  PubMed  Google Scholar 

  48. Schonewille M et al (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459–461; author reply 461

    Article  CAS  PubMed  Google Scholar 

  49. Arancillo M, White JJ, Lin T, Stay TL, Sillitoe RV (2015) In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol 113:578–591

    Article  PubMed  Google Scholar 

  50. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397

    Article  CAS  PubMed  Google Scholar 

  51. Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    Article  CAS  PubMed  Google Scholar 

  52. Cajal SR y (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés. Vol. I–II

    Google Scholar 

  53. Henle J (1879) Handbuch der Nervenlehre des Menschen. Fachbuchverlag, Dresden

    Google Scholar 

  54. Scott TG (1963) A unique pattern of localization within the cerebellum. Nature 200:793

    Article  CAS  PubMed  Google Scholar 

  55. Leclerc N, Dore L, Parent A, Hawkes R (1990) The compartmentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res 506:70–78

    Article  CAS  PubMed  Google Scholar 

  56. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    Article  CAS  PubMed  Google Scholar 

  57. Graham DJ, Wylie DR (2012) Zebrin-immunopositive and -immunonegative stripe pairs represent functional units in the pigeon vestibulocerebellum. J Neurosci 32:12769–12779

    Article  CAS  PubMed  Google Scholar 

  58. Sillitoe RV, Kunzle H, Hawkes R (2003) Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi. J Anat 203:283–296

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grandes P, Mateos JM, Ruegg D, Kuhn R, Knopfel T (1994) Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum. Neuroreport 5:2249–2252

    Article  CAS  PubMed  Google Scholar 

  60. Nagao S, Kwak S, Kanazawa I (1997) EAAT4, a glutamate transporter with properties of a chloride channel, is predominantly localized in Purkinje cell dendrites, and forms parasagittal compartments in rat cerebellum. Neuroscience 78:929–933

    Article  CAS  PubMed  Google Scholar 

  61. Sarna JR, Marzban H, Watanabe M, Hawkes R (2006) Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 496:303–313

    Article  CAS  PubMed  Google Scholar 

  62. Barmack NH, Qian Z, Yoshimura J (2000) Regional and cellular distribution of protein kinase C in rat cerebellar purkinje cells [in process citation]. J Comp Neurol 427:235–254

    Article  CAS  PubMed  Google Scholar 

  63. **no S, Jeromin A, Roder J, Kosaka T (2003) Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. J Comp Neurol 458:412–424

    Article  CAS  PubMed  Google Scholar 

  64. Furutama D et al (2010) Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of develo** mouse cerebellum. J Neurosci Res 88:2810–2825

    CAS  PubMed  Google Scholar 

  65. Marzban H et al (2003) Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and develo** mouse cerebellum and their localisation to parasagittal stripes. J Comp Neurol 462:286–301

    Article  CAS  PubMed  Google Scholar 

  66. Altman J, Bayer SA (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 29:265–274

    Article  CAS  PubMed  Google Scholar 

  67. Harris J, Moreno S, Shaw G, Mugnaini E (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons. J Neurocytol 22:1039–1059

    Article  CAS  PubMed  Google Scholar 

  68. Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ (2006) Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 26:12067–12080

    Article  CAS  PubMed  Google Scholar 

  69. Sugihara I, Shinoda Y (2007) Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional map** of the olivonuclear projection and aldolase C labeling. J Neurosci 27:9696–9710

    Article  CAS  PubMed  Google Scholar 

  70. Voogd J, Ruigrok TJ (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 33:5–21

    Article  PubMed  Google Scholar 

  71. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670–681

    Article  CAS  PubMed  Google Scholar 

  72. Sugihara I (2011) Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum 10:449–463

    Article  CAS  PubMed  Google Scholar 

  73. Sugihara I et al (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512:282–304

    Article  CAS  PubMed  Google Scholar 

  74. Huang CC et al (2013) Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. elife 2:e00400

    PubMed  PubMed Central  Google Scholar 

  75. Ruigrok TJ (2011) Ins and outs of cerebellar modules. Cerebellum 10:464–474

    Article  PubMed  Google Scholar 

  76. Wadiche JI, Jahr CE (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci 8:1329–1334

    Article  CAS  PubMed  Google Scholar 

  77. Shin JH, Kim YS, Linden DJ (2008) Dendritic glutamate release produces autocrine activation of mGluR1 in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 105:746–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim YS, Shin JH, Hall FS, Linden DJ (2009) Dopamine signaling is required for depolarization-induced slow current in cerebellar Purkinje cells. J Neurosci 29:8530–8538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim CH et al (2012) Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 590:273–288

    Article  CAS  PubMed  Google Scholar 

  80. Paukert M, Huang YH, Tanaka K, Rothstein JD, Bergles DE (2010) Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J Neurosci 30:7290–7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou H et al (2014) Cerebellar modules operate at different frequencies. elife 3:e02536

    PubMed  PubMed Central  Google Scholar 

  82. Zhou H, Voges K, Lin Z, Ju C, Schonewille M (2015) Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J Neurophysiol 113:2524–2536

    Article  PubMed  PubMed Central  Google Scholar 

  83. Peter S et al (2016) Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nat Commun 7:12627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goossens J et al (2001) Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci 21:5813–5823

    CAS  PubMed  Google Scholar 

  85. Schonewille M et al (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682

    Article  PubMed  Google Scholar 

  86. Badura A et al (2013) Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 78(4):700–713

    Article  CAS  PubMed  Google Scholar 

  87. White JJ et al (2016) An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 262:21–31

    Article  PubMed  PubMed Central  Google Scholar 

  88. Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fiber signals and their consequence(s). Behav Brain Sci 19:380–394

    Google Scholar 

  89. Bengtsson F, Jorntell H (2014) Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons. PLoS One 9:e84616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Haar S, Givon-Mayo R, Barmack NH, Yakhnitsa V, Donchin O (2015) Spontaneous activity does not predict morphological type in cerebellar interneurons. J Neurosci 35:1432–1442

    Article  CAS  PubMed  Google Scholar 

  91. Manni E, Petrosini LA (2004) Century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249

    Article  CAS  PubMed  Google Scholar 

  92. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136

    Article  CAS  PubMed  Google Scholar 

  93. Boele HJ, Koekkoek SK, De Zeeuw CI, Ruigrok TJ (2013) Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci 33:17897–17907

    Article  CAS  PubMed  Google Scholar 

  94. Hoebeek FE et al (2005) Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 45:953–965

    Article  CAS  PubMed  Google Scholar 

  95. Gincel D et al (2007) Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp Neurol 203:205–212

    Article  CAS  PubMed  Google Scholar 

  96. Dehnes Y et al (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    CAS  PubMed  Google Scholar 

  97. Fujita H et al (2014) Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice. PLoS One 9:e86679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687

    Article  PubMed  Google Scholar 

  99. Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806–1814

    CAS  PubMed  Google Scholar 

  100. De Zeeuw CI, Wylie DR, Stahl JS, Simpson JI (1995) Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements. J Neurophysiol 74:2051–2063

    PubMed  Google Scholar 

  101. De Zeeuw CI et al (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344

    Article  PubMed  CAS  Google Scholar 

  102. Kalmbach AS, Waters J (2012) Brain surface temperature under a craniotomy. J Neurophysiol 108:3138–3146

    Article  PubMed  PubMed Central  Google Scholar 

  103. Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Schonewille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, B., Schonewille, M. (2018). Targeted Electrophysiological Recordings In Vivo in the Mouse Cerebellum. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation