Employing Optogenetics in Memory Research

  • Protocol
  • First Online:
Optogenetics: A Roadmap

Part of the book series: Neuromethods ((NM,volume 133))

  • 1643 Accesses

Abstract

Optogenetics presents many opportunities for memory research, and was indeed warmly embraced by the field, and already employed to probe memory mechanisms in over a hundred published projects. The incorporation of optogenetics enabled scientists to causally pinpoint the real-time roles of specific neuronal populations within the brain structures underlying memory, the functional connections between them, and the dynamics of memory representation over time.

This chapter presents an elaborate point-by-point plan of designing and executing any optogenetic memory experiment, recognizes possible pitfalls, and offers solutions. The technical aspects will be discussed in light of multiple examples of the ways in which optogenetics has been used in memory research, and the exciting insight it provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 58.84
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 80.24
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein JG, Boyden ES (2011) Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 15(12):592–600. doi:10.1016/j.tics.2011.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goshen I (2014) The optogenetic revolution in memory research. Trends Neurosci 37(9):511–522. doi:10.1016/j.tins.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  3. Deisseroth K (2010) Controlling the brain with light. Sci Am 303(5):48–55

    Article  PubMed  Google Scholar 

  4. Johansen JP, Wolff SB, Luthi A, LeDoux JE (2012) Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 71(12):1053–1060. doi:10.1016/j.biopsych.2011.10.023

    Article  PubMed  Google Scholar 

  5. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029. doi:10.1038/nature07926

    Article  CAS  PubMed  Google Scholar 

  6. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–392. doi:10.1038/nn.2495

    Article  CAS  PubMed  Google Scholar 

  7. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178. doi:10.1038/nature10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O'Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172. doi:10.1038/nmeth.1808

    Article  CAS  Google Scholar 

  9. Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) NEUROSCIENCE. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349(6248):647–650. doi:10.1126/science.aaa7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344(6182):420–424. doi:10.1126/science.1252367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412. doi:10.1126/science.1249375

    Article  CAS  PubMed  Google Scholar 

  12. Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox Carteri. Nat Neurosci 11(6):631–633. doi:10.1038/nn.2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594. doi:10.1038/nbt957

    Article  CAS  PubMed  Google Scholar 

  14. Prakash R, Yizhar O, Grewe B, Ramakrishnan C, Wang N, Goshen I, Packer AM, Peterka DS, Yuste R, Schnitzer MJ, Deisseroth K (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9(12):1171–1179. doi:10.1038/nmeth.2215

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Salas E (1999) Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 10(5):458–464

    Article  CAS  PubMed  Google Scholar 

  16. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi:10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  Google Scholar 

  17. Sakaguchi M, Kim K, Yu LM, Hashikawa Y, Sekine Y, Okumura Y, Kawano M, Hayashi M, Kumar D, Boyden ES, McHugh TJ, Hayashi Y (2015) Inhibiting the activity of CA1 hippocampal neurons prevents the recall of contextual fear memory in inducible archT transgenic mice. PLoS One 10(6):e0130163. doi:10.1371/journal.pone.0130163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084. doi:10.1126/science.1168878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617–623. doi:10.1016/j.conb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Callaway EM, Luo L (2015) Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 35(24):8979–8985. doi:10.1523/JNEUROSCI.0409-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ekstrand MI, Enquist LW, Pomeranz LE (2008) The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14(3):134–140. doi:10.1016/j.molmed.2007.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Junyent F, Kremer EJ (2015) CAV-2-why a canine virus is a neurobiologist's best friend. Curr Opin Pharmacol 24:86–93. doi:10.1016/j.coph.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, Berndt A, Ramakrishnan C, Jaffe A, Lo M, Liston C, Deisseroth K (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659. doi:10.1038/nature15389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Grundemann J, Fadok JP, Muller C, Letzkus JJ, Luthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81(2):428–437. doi:10.1016/j.neuron.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385. doi:10.1038/nature11028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341(6144):387–391. doi:10.1126/science.1239073

    Article  CAS  PubMed  Google Scholar 

  27. Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL, Tonegawa S (2015) Activating positive memory engrams suppresses depression-like behaviour. Nature 522(7556):335–339. doi:10.1038/nature14514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ (2014) Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84(2):347–354. doi:10.1016/j.neuron.2014.09.037

    Article  CAS  PubMed  Google Scholar 

  29. Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513(7518):426–430. doi:10.1038/nature13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S (2015) Memory. Engram cells retain memory under retrograde amnesia. Science 348(6238):1007–1013. doi:10.1126/science.aaa5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohkawa N, Saitoh Y, Suzuki A, Tsujimura S, Murayama E, Kosugi S, Nishizono H, Matsuo M, Takahashi Y, Nagase M, Sugimura YK, Watabe AM, Kato F, Inokuchi K (2015) Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep 11(2):261–269. doi:10.1016/j.celrep.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  32. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456. doi:10.1038/nprot.2009.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733. doi:10.1016/j.neuron.2011.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71(1):9–34. doi:10.1016/j.neuron.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  35. Sidor MM, Davidson TJ, Tye KM, Warden MR, Diesseroth K, McClung CA (2015) In vivo optogenetic stimulation of the rodent central nervous system. J Vis Exp 95:51483. doi:10.3791/51483

    Google Scholar 

  36. Ung K, Arenkiel BR (2012) Fiber-optic implantation for chronic optogenetic stimulation of brain tissue. J Vis Exp 68:e50004. doi:10.3791/50004

    Google Scholar 

  37. Sparta DR, Stamatakis AM, Phillips JL, Hovelso N, van Zessen R, Stuber GD (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7(1):12–23. doi:10.1038/nprot.2011.413

    Article  CAS  Google Scholar 

  38. McCall JG, Kim TI, Shin G, Huang X, Jung YH, Al-Hasani R, Omenetto FG, Bruchas MR, Rogers JA (2013) Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 8(12):2413–2428. doi:10.1038/nprot.2013.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon AS (2015) Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 12(10):969–974. doi:10.1038/nmeth.3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geiger BM, Frank LE, Caldera-Siu AD, Pothos EN (2008) Survivable stereotaxic surgery in rodents. J Vis Exp 20:880. doi:10.3791/880

    Google Scholar 

  41. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424. doi:10.1038/nature06310

    Article  CAS  PubMed  Google Scholar 

  42. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702. doi:10.1038/nature07991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY, Adhikari A, Tye KM, Frank LM, Deisseroth K (2012) A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492(7429):428–432. doi:10.1038/nature11617

    CAS  PubMed  Google Scholar 

  44. Schmid F, Wachsmuth L, Albers F, Schwalm M, Stroh A, Faber C (2017) True and apparent optogenetic BOLD fMRI signals. Magn Reson Med 77(1):126–136. doi:10.1002/mrm.26095

    Article  CAS  PubMed  Google Scholar 

  45. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. doi:10.1146/annurev.neuro.23.1.155

    Article  CAS  PubMed  Google Scholar 

  46. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428. doi:10.1038/nrn3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5(11):844–852. doi:10.1038/nrn1535

    Article  CAS  PubMed  Google Scholar 

  48. Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110(1–2):73–81

    Article  CAS  PubMed  Google Scholar 

  49. Bouton ME, Bolles RC (1980) Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim Learn Behav 8(3):429–434

    Article  Google Scholar 

  50. Maren S, Holt W (2000) The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 110(1–2):97–108

    Article  CAS  PubMed  Google Scholar 

  51. Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147(3):678–689. doi:10.1016/j.cell.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  52. Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77(5):955–968. doi:10.1016/j.neuron.2012.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591(Pt 10):2381–2391. doi:10.1113/jphysiol.2012.248575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Muller C, Luthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468(7321):277–282. doi:10.1038/nature09559

    Article  CAS  PubMed  Google Scholar 

  55. Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TC, Herry C (2014) Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505(7481):92–96. doi:10.1038/nature12755

    Article  PubMed  CAS  Google Scholar 

  56. Fournier NM, Duman RS (2013) Illuminating hippocampal control of fear memory and anxiety. Neuron 77(5):803–806. doi:10.1016/j.neuron.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  57. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a synthetic memory trace. Science 335(6075):1513–1516. doi:10.1126/science.1214985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, Ge S (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15(12):1700–1706. doi:10.1038/nn.3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huff ML, Miller RL, Deisseroth K, Moorman DE, LaLumiere RT (2013) Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proc Natl Acad Sci U S A 110(9):3597–3602. doi:10.1073/pnas.1219593110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, Rainnie DG, Ressler KJ (2013) Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci 33(25):10396–10404. doi:10.1523/JNEUROSCI.5539-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, Aita M, Shilling-Scrivo K, Ramakrishnan C, Deisseroth K, Otte S, Stuber GD (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160(3):516–527. doi:10.1016/j.cell.2014.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, LeDoux JE (2010) Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci U S A 107(28):12692–12697. doi:10.1073/pnas.1002418107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73(3):553–566. doi:10.1016/j.neuron.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  64. Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A 110(50):20260–20265. doi:10.1073/pnas.1320325110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335. doi:10.1038/nature10674

    Article  CAS  PubMed  Google Scholar 

  66. Sparta DR, Smithuis J, Stamatakis AM, Jennings JH, Kantak PA, Ung RL, Stuber GD (2014) Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear. Front Behav Neurosci 8:129. doi:10.3389/fnbeh.2014.00129

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ (2013) Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol 23(2):99–106. doi:10.1016/j.cub.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  68. Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, Gradinaru V, Ramakrishnan C, Deisseroth K (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330(6011):1677–1681. doi:10.1126/science.1193771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C, Herry C, Ehrlich I, Friedrich RW, Letzkus JJ, Luthi A (2014) Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509(7501):453–458. doi:10.1038/nature13258

    Article  CAS  PubMed  Google Scholar 

  70. Xu W, Sudhof TC (2013) A neural circuit for memory specificity and generalization. Science 339(6125):1290–1295. doi:10.1126/science.1229534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baratta MV, Kodandaramaiah SB, Monahan PE, Yao J, Weber MD, Lin PA, Gisabella B, Petrossian N, Amat J, Kim K, Yang A, Forest CR, Boyden ES, Goosens KA (2015) Stress enables reinforcement-elicited serotonergic consolidation of fear memory. Biol Psychiatry 79(10):814–822. doi:10.1016/j.biopsych.2015.06.025

    Article  PubMed  PubMed Central  Google Scholar 

  72. Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35(8):3607–3615. doi:10.1523/JNEUROSCI.3137-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johansen JP, Diaz-Mataix L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J, Kumar A, Hou M, Deisseroth K, Boyden ES, LeDoux JE (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci U S A 111(51):E5584–E5592. doi:10.1073/pnas.1421304111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lux V, Masseck OA, Herlitze S, Sauvage MM (2015) Optogenetic destabilization of the memory trace in CA1: insights into reconsolidation and retrieval processes. Cereb Cortex 27(1):841–851. doi:10.1093/cercor/bhv282

    Google Scholar 

  75. Wang DV, Yau HJ, Broker CJ, Tsou JH, Bonci A, Ikemoto S (2015) Mesopontine median raphe regulates hippocampal ripple oscillation and memory consolidation. Nat Neurosci 18(5):728–735. doi:10.1038/nn.3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bero AW, Meng J, Cho S, Shen AH, Canter RG, Ericsson M, Tsai LH (2014) Early remodeling of the neocortex upon episodic memory encoding. Proc Natl Acad Sci U S A 111(32):11852–11857. doi:10.1073/pnas.1408378111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nomura H, Hara K, Abe R, Hitora-Imamura N, Nakayama R, Sasaki T, Matsuki N, Ikegaya Y (2015) Memory formation and retrieval of neuronal silencing in the auditory cortex. Proc Natl Acad Sci U S A 112(31):9740–9744. doi:10.1073/pnas.1500869112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwon JT, Nakajima R, Kim HS, Jeong Y, Augustine GJ, Han JH (2014) Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learn Mem 21(11):627–633. doi:10.1101/lm.035816.114

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83(3):722–735. doi:10.1016/j.neuron.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  80. Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343(6173):857–863. doi:10.1126/science.1247485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rei D, Mason X, Seo J, Graff J, Rudenko A, Wang J, Rueda R, Siegert S, Cho S, Canter RG, Mungenast AE, Deisseroth K, Tsai LH (2015) Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc Natl Acad Sci U S A 112(23):7291–7296. doi:10.1073/pnas.1415845112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352. doi:10.1038/nature13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  84. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  85. Sandi C, Loscertales M, Guaza C (1997) Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. Eur J Neurosci 9(4):637–642

    Article  CAS  PubMed  Google Scholar 

  86. Kolisnyk B, Guzman MS, Raulic S, Fan J, Magalhaes AC, Feng G, Gros R, Prado VF, Prado MA (2013) ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 33(25):10427–10438. doi:10.1523/JNEUROSCI.0395-13.2013

    Article  CAS  PubMed  Google Scholar 

  87. Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter GB, Rubenstein JL, Kreitzer AC, Huang Y (2012) Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One 7(7):e40555. doi:10.1371/journal.pone.0040555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clark RE, Broadbent NJ, Squire LR (2005) Hippocampus and remote spatial memory in rats. Hippocampus 15(2):260–272. doi:10.1002/hipo.20056

    Article  PubMed  PubMed Central  Google Scholar 

  89. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  CAS  PubMed  Google Scholar 

  90. Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Learn Cogn 2(2):97–116

    Article  Google Scholar 

  91. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59

    Article  CAS  PubMed  Google Scholar 

  92. Gheusi G, Bluthe RM, Goodall G, Dantzer R (1994) Social and individual recognition in rodents: methodological aspects and neurobiological bases. Behav Process 33(1–2):59–87. doi:10.1016/0376-6357(94)90060-4

    Article  CAS  Google Scholar 

  93. Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS (2016) Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol Psychiatry 21(8):1137–1144. doi:10.1038/mp.2015.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Olds J (1963) Self-stimulation experiments. Science 140(3563):218–220

    Article  CAS  PubMed  Google Scholar 

  95. Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15(8):1105–1107. doi:10.1038/nn.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16(7):966–973. doi:10.1038/nn.3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475(7356):377–380. doi:10.1038/nature10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15(9):1281–1289. doi:10.1038/nn.3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouebe G, Deisseroth K, Tye KM, Luscher C (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73(6):1173–1183. doi:10.1016/j.neuron.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  100. Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, Gordon JA, Brown A, Kellendonk C (2016) Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry 21(7):956–968. doi:10.1038/mp.2015.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Spellman T, Rigotti M, Ahmari SE, Fusi S, Gogos JA, Gordon JA (2015) Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 522(7556):309–314. doi:10.1038/nature14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Duan AR, Varela C, Zhang Y, Shen Y, **ong L, Wilson MA, Lisman J (2015) Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 77(12):1098–1107. doi:10.1016/j.biopsych.2015.01.020

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yamamoto J, Suh J, Takeuchi D, Tonegawa S (2014) Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157(4):845–857. doi:10.1016/j.cell.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  104. Shipton OA, El-Gaby M, Apergis-Schoute J, Deisseroth K, Bannerman DM, Paulsen O, Kohl MM (2014) Left-right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci U S A 111(42):15238–15243. doi:10.1073/pnas.1405648111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Siegle JH, Wilson MA (2014) Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 3:e03061. doi:10.7554/eLife.03061

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJ, Payen MP, Augusto E, Goncalves N, Tome AR, Li Z, Wu Z, Hou X, Zhou Y, AP IJ, Boyden ES, Cunha RA, Qu J, Chen JF (2015) Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 20(11):1339–1349. doi:10.1038/mp.2014.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McNamara CG, Tejero-Cantero A, Trouche S, Campo-Urriza N, Dupret D (2014) Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 17(12):1658–1660. doi:10.1038/nn.3843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bussey TJ, Padain TL, Skillings EA, Winters BD, Morton AJ, Saksida LM (2008) The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn Mem 15(7):516–523. doi:10.1101/lm.987808

    Article  PubMed  PubMed Central  Google Scholar 

  109. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213. doi:10.1126/science.1173215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ho JW, Poeta DL, Jacobson TK, Zolnik TA, Neske GT, Connors BW, Burwell RD (2015) Bidirectional modulation of recognition memory. J Neurosci 35(39):13323–13335. doi:10.1523/JNEUROSCI.2278-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu GY, Liu GL, Zhang HM, Chen C, Liu SL, Feng H, Sui JF (2015) Optogenetic stimulation of mPFC pyramidal neurons as a conditioned stimulus supports associative learning in rats. Sci Rep 5:10065. doi:10.1038/srep10065

    Article  PubMed  PubMed Central  Google Scholar 

  112. Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R (2011) Driving opposing behaviors with ensembles of piriform neurons. Cell 146(6):1004–1015. doi:10.1016/j.cell.2011.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76(1):33–50. doi:10.1016/j.neuron.2012.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tritsch NX, Oh WJ, Gu C, Sabatini BL (2014) Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 3:e01936. doi:10.7554/eLife.01936

    Article  PubMed  PubMed Central  Google Scholar 

  115. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30(24):8229–8233. doi:10.1523/JNEUROSCI.1754-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang S, Qi J, Li X, Wang HL, Britt JP, Hoffman AF, Bonci A, Lupica CR, Morales M (2015) Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci 18(3):386–392. doi:10.1038/nn.3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fenno LE, Mattis J, Ramakrishnan C, Hyun M, Lee SY, He M, Tucciarone J, Selimbeyoglu A, Berndt A, Grosenick L, Zalocusky KA, Bernstein H, Swanson H, Perry C, Diester I, Boyce FM, Bass CE, Neve R, Huang ZJ, Deisseroth K (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11(7):763–772. doi:10.1038/nmeth.2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deisseroth K, Schnitzer MJ (2013) Engineering approaches to illuminating brain structure and dynamics. Neuron 80(3):568–577. doi:10.1016/j.neuron.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  119. Packer AM, Roska B, Hausser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16(7):805–815. doi:10.1038/nn.3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lignani G, Ferrea E, Difato F, Amaru J, Ferroni E, Lugara E, Espinoza S, Gainetdinov RR, Baldelli P, Benfenati F (2013) Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity. Front Mol Neurosci 6:22. doi:10.3389/fnmol.2013.00022

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chun S, Bayazitov IT, Blundon JA, Zakharenko SS (2013) Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. J Neurosci 33(17):7345–7357. doi:10.1523/JNEUROSCI.4500-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Raimondo JV, Kay L, Ellender TJ, Akerman CJ (2012) Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15(8):1102–1104. doi:10.1038/nn.3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang SH, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61(49–79):C41–C44. doi:10.1146/annurev.psych.093008.100523

    Google Scholar 

  124. Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290(5494):1170–1174

    Article  CAS  PubMed  Google Scholar 

  125. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317(5834):94–99. doi:10.1126/science.1140263

    Article  CAS  PubMed  Google Scholar 

  126. Daumas S, Halley H, Frances B, Lassalle JM (2005) Encoding, consolidation, and retrieval of contextual memory: differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn Mem 12(4):375–382. doi:10.1101/lm.81905

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stefanelli T, Bertollini C, Luscher C, Muller D, Mendez P (2016) Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89(5):1074–1085. doi:10.1016/j.neuron.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  128. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4):589–596. doi:10.1016/j.neuron.2011.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci 31(42):15113–15127. doi:10.1523/JNEUROSCI.3432-11.2011

    Article  CAS  PubMed  Google Scholar 

  130. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus--memory and anxiety. Neurosci Biobehav Rev 28(3):273–283. doi:10.1016/j.neubiorev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  131. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130. doi:10.1038/nrn1607

    Article  CAS  PubMed  Google Scholar 

  132. Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16(2):179–190. doi:10.1016/j.conb.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  133. Winocur G, Moscovitch M, Bontempi B (2010) Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48(8):2339–2356. doi:10.1016/j.neuropsychologia.2010.04.016

    Article  PubMed  Google Scholar 

  134. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S (2008) Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319(5867):1260–1264. doi:10.1126/science.1151120

    Article  CAS  PubMed  Google Scholar 

  135. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139(4):814–827. doi:10.1016/j.cell.2009.10.020

    Article  CAS  PubMed  Google Scholar 

  136. Wiltgen BJ, Zhou M, Cai Y, Balaji J, Karlsson MG, Parivash SN, Li W, Silva AJ (2010) The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr Biol 20(15):1336–1344. doi:10.1016/j.cub.2010.06.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76(6):1057–1070. doi:10.1016/j.neuron.2012.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304(5672):881–883. doi:10.1126/science.1094804

    Article  CAS  PubMed  Google Scholar 

  139. Gilmartin MR, Miyawaki H, Helmstetter FJ, Diba K (2013) Prefrontal activity links nonoverlap** events in memory. J Neurosci 33(26):10910–10914. doi:10.1523/JNEUROSCI.0144-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Do-Monte FH, Quinones-Laracuente K, Quirk GJ (2015) A temporal shift in the circuits mediating retrieval of fear memory. Nature 519(7544):460–463. doi:10.1038/nature14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim HS, Cho HY, Augustine GJ, Han JH (2015) Selective control of fear expression by optogenetic manipulation of infralimbic cortex after extinction. Neuropsychopharmacology 41(5):1261–1273. doi:10.1038/npp.2015.276

    Article  PubMed  PubMed Central  Google Scholar 

  142. Brown MT, Tan KR, O'Connor EC, Nikonenko I, Muller D, Luscher C (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492(7429):452–456. doi:10.1038/nature11657

    Article  CAS  PubMed  Google Scholar 

  143. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316(5823):457–460. doi:10.1126/science.1139438

    Article  CAS  PubMed  Google Scholar 

  144. Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317(5842):1230–1233. doi:10.1126/science.1143839

    Article  CAS  PubMed  Google Scholar 

  145. Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ (2014) Synaptic tagging during memory allocation. Nat Rev Neurosci 15(3):157–169. doi:10.1038/nrn3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Han JH, Kushner SA, Yiu AP, Hsiang HL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA (2009) Selective erasure of a fear memory. Science 323(5920):1492–1496. doi:10.1126/science.1164139

    Article  CAS  PubMed  Google Scholar 

  147. Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci 12(11):1438–1443. doi:10.1038/nn.2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17(2):89–102. doi:10.1038/nrn.2015.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, Frank D, Kajikawa K, Mise N, Obata Y, Wickersham IR, Tonegawa S (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17(2):269–279. doi:10.1038/nn.3614

    Article  CAS  PubMed  Google Scholar 

  150. Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508(7494):88–92. doi:10.1038/nature13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16(3):264–266. doi:10.1038/nn.3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kugler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. doi:10.3389/fnmol.2013.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ohkura M, Sasaki T, Sadakari J, Gengyo-Ando K, Kagawa-Nagamura Y, Kobayashi C, Ikegaya Y, Nakai J (2012) Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7(12):e51286. doi:10.1371/journal.pone.0051286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inbal Goshen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Regev, L., Goshen, I. (2018). Employing Optogenetics in Memory Research. In: Stroh, A. (eds) Optogenetics: A Roadmap. Neuromethods, vol 133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7417-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7417-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7415-3

  • Online ISBN: 978-1-4939-7417-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation