A Culture-Dependent Method for the Identification of Quorum Quenching Enzymes of Microbial Origin

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1673))

Abstract

Although it has been more than a decade since the first discovery of AHL lactonase AiiA in Bacillus sp. 240B1, we are only beginning to understand the diversity of quorum quenching (QQ) enzymes. Most of the previously identified QQ enzymes are derived from nonmarine microorganisms. A novel marine-derived secretory AHL lactonase, MomL, was found in Muricauda olearia in our previous work and represents a novel type of AHL lactonase widespread in the ocean. Herein, we describe a culture-dependent method for the identification of microbial QQ enzymes, especially the high-throughput method for screening QQ bacteria from cultivable bacterial strains. This method should be capable of efficiently identifying QQ enzymes from various microbial origins. The discovery of more QQ enzymes will help us to understand their ecological roles and may provide potential as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  PubMed  Google Scholar 

  2. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenberg EP, Hastings JW, Ulitzur S (1979) Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch Microbiol 120:87–91

    Article  CAS  Google Scholar 

  4. Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  7. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  CAS  PubMed  Google Scholar 

  9. Tang K, Zhang Y, Yu M, Shi X, Coenye T, Bossier P et al (2013) Evaluation of a new high-throughput method for identifying quorum quenching bacteria. Sci Rep 3:2935

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tang K, Su Y, Brackman G, Cui F, Zhang Y, Shi X et al (2015) MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawaguchi T, Chen YP, Norman RS, Decho AW (2008) Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol 74:3667–3671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khopkar SM (1998) Basic concepts of analytical chemistry. New Age International Publishers, London

    Google Scholar 

  14. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY et al (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550

    Article  CAS  PubMed  Google Scholar 

  15. Wang WZ, Morohoshi T, Ikenoya M, Someya N, Ikeda T (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76:2524–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomas PW, Fast W (2011) Heterologous overexpression, purification, and in vitro characterization of AHL lactonases. In: Rumbaugh KP (ed) Quorum sensing: methods and protocols. Humana Press, Totowa, NJ, pp 275–290

    Chapter  Google Scholar 

  17. Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure DD (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116

    Article  CAS  PubMed  Google Scholar 

  18. Tang K, Zhang XH (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12:3245–3282

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE et al (2002) N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the permission from Nature Publishing Group and American Society for Microbiology of reproduction of figures. We thank Dr. Robert J.C. McLean (Texas State University, USA) for biosensor A. tumefaciens A136. This work was supported by the International Science and Technology Cooperation Programme of China (no. 2012DFG31990), the National Natural Science Foundation of China (no. 41476112), and the Qingdao Postdoctoral Application Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Hua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, K., Zhang, XH. (2018). A Culture-Dependent Method for the Identification of Quorum Quenching Enzymes of Microbial Origin. In: Leoni, L., Rampioni, G. (eds) Quorum Sensing. Methods in Molecular Biology, vol 1673. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7309-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7309-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7308-8

  • Online ISBN: 978-1-4939-7309-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation