In Vivo Determination of Glutamate Uptake by Brain Microdialysis

  • Protocol
  • First Online:
Biochemical Approaches for Glutamatergic Neurotransmission

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

Glutamate uptake has a predominant role in the regulation of glutamate homeostasis mainly for the prevention of hyperexcitability and excitotoxicity which induce neuronal dysfunctions and neurological diseases. An evaluation of in vivo glutamate transport can enable to verify the functional impact of alterations previously found in in vitro and ex vivo preparations. The use of brain microdialysis to sample the extracellular medium has allowed to quantify the dynamic uptake of glutamate through the active transporters present on cell membranes which maintain glutamate homeostasis. We describe two quantitative methods based on the application of labeled or unlabeled glutamate through a microdialysis probe to measure the in vivo uptake of glutamate in a discrete brain area of freely moving rats, accompanied with step by step details. Advantages and drawbacks of the methods are also discussed on both methodological and physiological bases, by relying on previous studies carried out in experimental pathological or pharmacological models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kera Y, Aoyama H, Matsumura H, Hasegawa A, Nagasaki H, Yamada R (1995) Presence of free D-glutamate and D-aspartate in rat tissues. Biochim Biophys Acta 1243(2):283–286

    CAS  PubMed  Google Scholar 

  2. Kera Y, Aoyama H, Watanabe N, Yamada RH (1996) Distribution of D-aspartate oxidase and free D-glutamate and D-aspartate in chicken and pigeon tissues. Comp Biochem Physiol B Biochem Mol Biol 115(1):121–126

    Article  CAS  PubMed  Google Scholar 

  3. D'Aniello A, D'Onofrio G, Pischetola M, D'Aniello G, Vetere A, Petrucelli L, Fisher GH (1993) Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J Biol Chem 268(36):26941–26949

    PubMed  Google Scholar 

  4. Palmada M, Centelles JJ (1998) Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci 3:d701–d718

    Article  CAS  PubMed  Google Scholar 

  5. Kvamme E (1998) Synthesis of glutamate and its regulation. Prog Brain Res 116:73–85

    Article  CAS  PubMed  Google Scholar 

  6. Dulac O, Milh M, Holmes GL (2013) Brain maturation and epilepsy. Handb Clin Neurol 111:441–446. doi:10.1016/B978-0-444-52891-9.00047-6

    Article  PubMed  Google Scholar 

  7. Feldman DE, Knudsen EI (1998) Experience-dependent plasticity and the maturation of glutamatergic synapses. Neuron 20(6):1067–1071

    Article  CAS  PubMed  Google Scholar 

  8. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42(1):1–11

    Article  CAS  PubMed  Google Scholar 

  9. Orrego F (1979) Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro. Neuroscience 4(8):1037–1057

    Article  CAS  PubMed  Google Scholar 

  10. Wheal H, Thomson A (1991) Excitatory amino acids and synaptic transmission. Academic Press, San Diego

    Google Scholar 

  11. Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59(1):33–78

    Article  CAS  PubMed  Google Scholar 

  12. Ottersen OP, Landsend AS (1997) Organization of glutamate receptors at the synapse. Eur J Neurosci 9(11):2219–2224

    Article  CAS  PubMed  Google Scholar 

  13. Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13(1):28–37. doi:10.1177/1073858406294270

    Article  CAS  PubMed  Google Scholar 

  14. Verkhratsky A, Burnstock G (2014) Purinergic and glutamatergic receptors on astroglia. Adv Neurobiol 11:55–79. doi:10.1007/978-3-319-08894-5_4

    Article  PubMed  Google Scholar 

  15. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369(6483):744–747. doi:10.1038/369744a0

    Article  CAS  PubMed  Google Scholar 

  16. Parpura V, Grubisic V, Verkhratsky A (2011) Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim Biophys Acta 1813(5):984–991. doi:10.1016/j.bbamcr.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52(1–2):142–154. doi:10.1016/j.neuint.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  18. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  PubMed  Google Scholar 

  19. Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond Ser B Biol Sci 369(1654):20130592. doi:10.1098/rstb.2013.0592

    Article  Google Scholar 

  20. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93(4):1621–1657. doi:10.1152/physrev.00007.2013

    Article  CAS  PubMed  Google Scholar 

  21. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, ** L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  22. Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45. doi:10.1016/j.neuint.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  23. Alexander SP, Mathie A, Peters JA (2008) Guide to receptors and channels (GRAC), 3rd edition. Br J Pharmacol 153(Suppl 2):S1–209. doi:10.1038/sj.bjp.0707746

    Article  PubMed  PubMed Central  Google Scholar 

  24. Waagepetersen HS, Shimamoto K, Schousboe A (2001) Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3h]D-aspartate in astrocytes and glutamatergic neurons. Neurochem Res 26(6):661–666

    Article  CAS  PubMed  Google Scholar 

  25. Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, Scanziani M, Gahwiler BH, Gerber U (1999) Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 96(15):8733–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volterra A, Bezzi P, Rizzini BL, Trotti D, Ullensvang K, Danbolt NC, Racagni G (1996) The competitive transport inhibitor L-trans-pyrrolidine-2, 4-dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. Eur J Neurosci 8(9):2019–2028

    Article  CAS  PubMed  Google Scholar 

  27. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11(11):462–468

    Article  PubMed  Google Scholar 

  28. Ketheeswaranathan P, Turner NA, Spary EJ, Batten TF, McColl BW, Saha S (2011) Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res 1418:93–103. doi:10.1016/j.brainres.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  29. Chen KH, Reese EA, Kim HW, Rapoport SI, Rao JS (2011) Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J Alzheimers Dis 26(4):755–766. doi:10.3233/JAD-2011-110002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Donovan SM, Hasselfeld K, Bauer D, Simmons M, Roussos P, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2015) Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 5:e579. doi:10.1038/tp.2015.74

    Article  PubMed  PubMed Central  Google Scholar 

  31. Llorente IL, Landucci E, Pellegrini-Giampietro DE, Fernandez-Lopez A (2015) Glutamate receptor and transporter modifications in rat organotypic hippocampal slice cultures exposed to oxygen-glucose deprivation: the contribution of cyclooxygenase-2. Neuroscience 292:118–128. doi:10.1016/j.neuroscience.2015.02.040

    Article  CAS  PubMed  Google Scholar 

  32. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89(22):10955–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Velaz-Faircloth M, McGraw TS, Alandro MS, Fremeau RT Jr, Kilberg MS, Anderson KJ (1996) Characterization and distribution of the neuronal glutamate transporter EAAC1 in rat brain. Am J Phys 270(1 Pt 1):C67–C75

    CAS  Google Scholar 

  34. Dutuit M, Touret M, Szymocha R, Nehlig A, Belin MF, Didier-Bazes M (2002) Decreased expression of glutamate transporters in genetic absence epilepsy rats before seizure occurrence. J Neurochem 80(6):1029–1038

    Article  CAS  PubMed  Google Scholar 

  35. Lauriat TL, Richler E, McInnes LA (2007) A quantitative regional expression profile of EAAT2 known and novel splice variants reopens the question of aberrant EAAT2 splicing in disease. Neurochem Int 50(1):271–280. doi:10.1016/j.neuint.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  36. Torp R, Danbolt NC, Babaie E, Bjoras M, Seeberg E, Storm-Mathisen J, Ottersen OP (1994) Differential expression of two glial glutamate transporters in the rat brain: an in situ hybridization study. Eur J Neurosci 6(6):936–942

    Article  CAS  PubMed  Google Scholar 

  37. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125(Pt 8):1908–1922

    Article  CAS  PubMed  Google Scholar 

  38. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates GP (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8(5):807–821. doi:10.1006/nbdi.2001.0430

    Article  CAS  PubMed  Google Scholar 

  39. Arzberger T, Krampfl K, Leimgruber S, Weindl A (1997) Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. J Neuropathol Exp Neurol 56(4):440–454

    Article  CAS  PubMed  Google Scholar 

  40. Munch C, Ebstein M, Seefried U, Zhu B, Stamm S, Landwehrmeyer GB, Ludolph AC, Schwalenstocker B, Meyer T (2002) Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem 82(3):594–603

    Article  CAS  PubMed  Google Scholar 

  41. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, Parrot S, Malleret G, Peyron C, Benetollo C, Auvergnon N, Vukusic S, Giraudon P (2016) Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation 13(1):111. doi:10.1186/s12974-016-0577-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dutuit M, Didier-Bazes M, Vergnes M, Mutin M, Conjard A, Akaoka H, Belin MF, Touret M (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32(1):15–24

    Article  CAS  PubMed  Google Scholar 

  43. Touret M, Parrot S, Denoroy L, Belin MF, Didier-Bazes M (2007) Glutamatergic alterations in the cortex of genetic absence epilepsy rats. BMC Neurosci 8:69. doi:10.1186/1471-2202-8-69

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hamano K, Hayashi M, Shioda K, Fukatsu R, Mizutani S (2008) Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue. Acta Neuropathol 115(5):547–559. doi:10.1007/s00401-007-0325-3

    Article  CAS  PubMed  Google Scholar 

  45. Herbert MK, Kuiperij HB, Verbeek MM (2012) Optimisation of the quantification of glutamine synthetase and myelin basic protein in cerebrospinal fluid by a combined acidification and neutralisation protocol. J Immunol Methods 381(1-2):1–8. doi:10.1016/j.jim.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  46. Schlosser M, Hahmann J, Ziegler B, Augstein P, Ziegler M (1997) Sensitive monoclonal antibody-based sandwich ELISA for determination of the diabetes-associated autoantigen glutamic acid decarboxylase GAD65. J Immunoass 18(4):289–307

    Article  CAS  Google Scholar 

  47. Fang J, Han D, Hong J, Tan Q, Tian Y (2012) The chemokine, macrophage inflammatory protein-2gamma, reduces the expression of glutamate transporter-1 on astrocytes and increases neuronal sensitivity to glutamate excitotoxicity. J Neuroinflammation 9:267. doi:10.1186/1742-2094-9-267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goursaud S, Maloteaux JM, Hermans E (2009) Distinct expression and regulation of the glutamate transporter isoforms GLT-1a and GLT-1b in cultured astrocytes from a rat model of amyotrophic lateral sclerosis (hSOD1G93A). Neurochem Int 55(1-3):28–34. doi:10.1016/j.neuint.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  49. Potier B, Billard JM, Riviere S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9(5):722–735. doi:10.1111/j.1474-9726.2010.00593.x

    Article  CAS  PubMed  Google Scholar 

  50. Parsons MP, Vanni MP, Woodard CL, Kang R, Murphy TH, Raymond LA (2016) Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 7:11251. doi:10.1038/ncomms11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liaw WJ, Stephens RL Jr, Binns BC, Chu Y, Sepkuty JP, Johns RA, Rothstein JD, Tao YX (2005) Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 115(1-2):60–70. doi:10.1016/j.pain.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  52. Binns BC, Huang Y, Goettl VM, Hackshaw KV, Stephens RL Jr (2005) Glutamate uptake is attenuated in spinal deep dorsal and ventral horn in the rat spinal nerve ligation model. Brain Res 1041(1):38–47. doi:10.1016/j.brainres.2005.01.088

    Article  CAS  PubMed  Google Scholar 

  53. Hacimuftuoglu A, Tatar A, Cetin D, Taspinar N, Saruhan F, Okkay U, Turkez H, Unal D, Stephens RL Jr, Suleyman H (2016) Astrocyte/neuron ratio and its importance on glutamate toxicity: an in vitro voltammetric study. Cytotechnology 68(4):1425–1433. doi:10.1007/s10616-015-9902-9

    Article  CAS  PubMed  Google Scholar 

  54. Ungerstedt U (1991) Microdialysis—principles and applications for studies in animals and man. J Intern Med 230(4):365–373

    Article  CAS  PubMed  Google Scholar 

  55. Kehr J (2010) Monitoring molecules in neuroscience: 50 years. In: Westerink B, Clinkers R, Smolders I, Sarre S, Michotte Y (eds) Monitoring molecules in neuroscience, Brussels, Belgium, 2010. Proceedings of 13th international conference on in vivo methods

    Google Scholar 

  56. Parrot S, Bert L, Mouly-Badina L, Sauvinet V, Colussi-Mas J, Lambas-Senas L, Robert F, Bouilloux JP, Suaud-Chagny MF, Denoroy L, Renaud B (2003) Microdialysis monitoring of catecholamines and excitatory amino acids in the rat and mouse brain: recent developments based on capillary electrophoresis with laser-induced fluorescence detection—a mini-review. Cell Mol Neurobiol 23(4-5):793–804

    Article  CAS  PubMed  Google Scholar 

  57. Lee WH, Ngernsutivorakul T, Mabrouk OS, Wong JM, Dugan CE, Pappas SS, Yoon HJ, Kennedy RT (2016) Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Anal Chem 88(2):1230–1237. doi:10.1021/acs.analchem.5b03541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Drew KL, Pehek EA, Rasley BT, Ma YL, Green TK (2004) Sampling glutamate and GABA with microdialysis: suggestions on how to get the dialysis membrane closer to the synapse. J Neurosci Methods 140(1-2):127–131. doi:10.1016/j.jneumeth.2004.04.039

    Article  CAS  PubMed  Google Scholar 

  59. Bungay PM, Morrison PF, Dedrick RL (1990) Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci 46(2):105–119

    Article  CAS  PubMed  Google Scholar 

  60. Justice JB Jr (1993) Quantitative microdialysis of neurotransmitters. J Neurosci Methods 48(3):263–276

    Article  CAS  PubMed  Google Scholar 

  61. Chen KC (2006) Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J Theor Biol 238(4):863–881. doi:10.1016/j.jtbi.2005.06.035

    Article  CAS  PubMed  Google Scholar 

  62. Brun P, Begou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny MF (2005) Dopaminergic transmission in STOP null mice. J Neurochem 94(1):63–73. doi:10.1111/j.1471-4159.2005.03166.x

    Article  CAS  PubMed  Google Scholar 

  63. Parrot S (2000) Intérêts et limites de la microdialyse intracérébrale couplée à l'électrophorèse capillaire pour l'étude des acides aminés excitateurs cérébraux. Thèse de doctorat Sciences. Biochimie, Université Claude Bernard Lyon 1

    Google Scholar 

  64. Sauvinet V, Parrot S, Benturquia N, Bravo-Moraton E, Renaud B, Denoroy L (2003) In vivo simultaneous monitoring of gamma-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: analytical developments and in vitro/in vivo validations. Electrophoresis 24(18):3187–3196. doi:10.1002/elps.200305565

    Article  CAS  PubMed  Google Scholar 

  65. Bruhn T, Christensen T, Diemer NH (1995) Microdialysis as a tool for in vivo investigation of glutamate transport capacity in rat brain. J Neurosci Methods 59(2):169–174

    Article  CAS  PubMed  Google Scholar 

  66. Alexander GM, Grothusen JR, Gordon SW, Schwartzman RJ (1997) Intracerebral microdialysis study of glutamate reuptake in awake, behaving rats. Brain Res 766(1-2):1–10

    Article  CAS  PubMed  Google Scholar 

  67. Hershey ND, Kennedy RT (2013) In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem Neurosci 4(5):729–736. doi:10.1021/cn300199m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferry B, Parrot S, Marien M, Lazarus C, Cassel JC, McGaugh JL (2015) Noradrenergic influences in the basolateral amygdala on inhibitory avoidance memory are mediated by an action on alpha2-adrenoceptors. Psychoneuroendocrinology 51:68–79. doi:10.1016/j.psyneuen.2014.09.010

    CAS  PubMed  Google Scholar 

  69. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  70. Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M, Cavillon G, Rogemond V, Confavreux C, Honnorat J, Giraudon P (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133(9):2578–2591. doi:10.1093/brain/awq177

    Article  PubMed  Google Scholar 

  71. Parrot S, Sauvinet V, Riban V, Depaulis A, Renaud B, Denoroy L (2004) High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods 140(1-2):29–38. doi:10.1016/j.jneumeth.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  72. Parsons LH, Justice JB Jr (1994) Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 8(3):189–220

    CAS  PubMed  Google Scholar 

  73. Westerberg E, Chapman AG, Meldrum BS (1983) Effect of 2-amino-7-phosphonoheptanoic acid on regional brain amino acid levels in fed and fasted rodents. J Neurochem 41(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  74. Wolfersberger MG, Tabachnick J, Finkelstein BS, Levin M (1973) L-pyrrolidone carboxylic acid content in mammalian epidermis and other tissues. J Invest Dermatol 60(5):278–281

    Article  CAS  PubMed  Google Scholar 

  75. El-Khoury R, Panayotis N, Matagne V, Ghata A, Villard L, Roux JC (2014) GABA and glutamate pathways are spatially and developmentally affected in the brain of Mecp2-deficient mice. PLoS One 9(3):e92169. doi:10.1371/journal.pone.0092169

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dobkin J (1972) Effects of excitation and anaesthesia on the glutamine content of the rat brain with a reference to the administration of glutamine. J Neurochem 19(4):1195–1202

    Article  CAS  PubMed  Google Scholar 

  77. Agrawal HC, Davis JM, Himwich WA (1968) Developmental changes in mouse brain: weight, water content and free amino acids. J Neurochem 15(9):917–923

    Article  CAS  PubMed  Google Scholar 

  78. Emson PC, Joseph MH (1975) Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res 93(1):91–110

    Article  CAS  PubMed  Google Scholar 

  79. Timmerman W, Cisci G, Nap A, de Vries JB, Westerink BH (1999) Effects of handling on extracellular levels of glutamate and other amino acids in various areas of the brain measured by microdialysis. Brain Res 833(2):150–160

    Article  CAS  PubMed  Google Scholar 

  80. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17(8):2921–2927

    CAS  PubMed  Google Scholar 

  81. Parrot S, Bert L, Renaud B, Denoroy L (2001) Large inter-experiment variations in microdialysate aspartate and glutamate in rat striatum may reflect a circannual rhythm. Synapse 39(3):267–269. doi:10.1002/1098-2396(20010301)39:3<267::AID-SYN1008>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  82. Wise BL, Perkins RK, Stevenson E, Scott KG (1964) Penetration of C14-labelled mannitol from serum into cerebrospinal fluid and brain. Exp Neurol 10:264–270

    Article  CAS  PubMed  Google Scholar 

  83. Bert L, Favale D, Jego G, Greve P, Guilloux JP, Guiard BP, Gardier AM, Suaud-Chagny MF, Lestage P (2004) Rapid and precise method to locate microdialysis probe implantation in the rodent brain. J Neurosci Methods 140(1-2):53–57. doi:10.1016/j.jneumeth.2004.04.042

    Article  CAS  PubMed  Google Scholar 

  84. Hegoburu C, Sevelinges Y, Thevenet M, Gervais R, Parrot S, Mouly AM (2009) Differential dynamics of amino acid release in the amygdala and olfactory cortex during odor fear acquisition as revealed with simultaneous high temporal resolution microdialysis. Learn Mem 16(11):687–697. doi:10.1101/lm.1584209

    Article  CAS  PubMed  Google Scholar 

  85. Engleman EA, Ingraham CM, McBride WJ, Lumeng L, Murphy JM (2006) Extracellular dopamine levels are lower in the medial prefrontal cortex of alcohol-preferring rats compared to Wistar rats. Alcohol 38(1):5–12. doi:10.1016/j.alcohol.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  86. Unger EL, Bianco LE, Jones BC, Allen RP, Earley CJ (2014) Low brain iron effects and reversibility on striatal dopamine dynamics. Exp Neurol 261:462–468. doi:10.1016/j.expneurol.2014.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guiard BP, David DJ, Deltheil T, Chenu F, Le Maitre E, Renoir T, Leroux-Nicollet I, Sokoloff P, Lanfumey L, Hamon M, Andrews AM, Hen R, Gardier AM (2008) Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. Int J Neuropsychopharmacol 11(1):79–92. doi:10.1017/S1461145707007857

    Article  CAS  PubMed  Google Scholar 

  88. Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140(1-2):169–181. doi:10.1016/j.jneumeth.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  89. Shippenberg TS, Hen R, He M (2000) Region-specific enhancement of basal extracellular and cocaine-evoked dopamine levels following constitutive deletion of the Serotonin(1B) receptor. J Neurochem 75(1):258–265

    Article  CAS  PubMed  Google Scholar 

  90. Luellen BA, Bianco LE, Schneider LM, Andrews AM (2007) Reduced brain-derived neurotrophic factor is associated with a loss of serotonergic innervation in the hippocampus of aging mice. Genes Brain Behav 6(5):482–490. doi:10.1111/j.1601-183X.2006.00279.x

    Article  CAS  PubMed  Google Scholar 

  91. Pati D, Kelly K, Stennett B, Frazier CJ, Knackstedt LA (2016) Alcohol consumption increases basal extracellular glutamate in the nucleus accumbens core of Sprague-Dawley rats without increasing spontaneous glutamate release. Eur J Neurosci 44(2):1896–1905. doi:10.1111/ejn.13284

    Article  PubMed  Google Scholar 

  92. Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, Kennedy RT, Rebec GV (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153(1):329–337. doi:10.1016/j.neuroscience.2008.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katner SN, Weiss F (2001) Neurochemical characteristics associated with ethanol preference in selected alcohol-preferring and -nonpreferring rats: a quantitative microdialysis study. Alcohol Clin Exp Res 25(2):198–205

    Article  CAS  PubMed  Google Scholar 

  94. Zimmer L, Kodas E, Guilloteau D, Garreau L, Besnard J, Chalon S (2000) Microdialysis as a tool for in vivo study of dopamine transporter function in rat brains. J Neurosci Methods 103(2):137–144

    Article  CAS  PubMed  Google Scholar 

  95. Aloyo VJ, Walker RF (1987) Noradrenergic stimulation of serotonin release from rat pineal glands in vitro. J Endocrinol 114(1):3–9

    Article  CAS  PubMed  Google Scholar 

  96. al-Sarraf H, Preston JE, Segal MB (1997) Acidic amino acid accumulation by rat choroid plexus during development. Brain Res Dev Brain Res 102(1):47–52

    Article  CAS  PubMed  Google Scholar 

  97. Denoroy L, Bert L, Parrot S, Robert F, Renaud B (1998) Assessment of pharmacodynamic and pharmacokinetic characteristics of drugs using microdialysis sampling and capillary electrophoresis. Electrophoresis 19(16-17):2841–2847. doi:10.1002/elps.1150191609

    Article  CAS  PubMed  Google Scholar 

  98. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

The authors thank the Institut National de la Santé et de la Recherche Médicale (INSERM), the Centre National de la Recherche Scientifique (CNRS), and the Université Claude Bernard Lyon 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Parrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Parrot, S., Touret, M., Denoroy, L. (2018). In Vivo Determination of Glutamate Uptake by Brain Microdialysis. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation