Liquid Phase Multiplex High-Throughput Screening of Metagenomic Libraries Using p-Nitrophenyl-Linked Substrates for Accessory Lignocellulosic Enzymes

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1539))

Abstract

To access the genetic potential contained in large metagenomic libraries, suitable high-throughput functional screening methods are required. Here we describe a high-throughput screening approach which enables the rapid identification of metagenomic library clones expressing functional accessory lignocellulosic enzymes. The high-throughput nature of this method hinges on the multiplexing of both the E. coli metagenomic library clones and the colorimetric p-nitrophenyl linked substrates which allows for the simultaneous screening for β-glucosidases, β-xylosidases, and α-l-arabinofuranosidases. This method is readily automated and compatible with high-throughput robotic screening systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 89.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  2. Streit WR, Schmitz RA (2004) Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  3. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329

    Article  CAS  PubMed  Google Scholar 

  4. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  5. Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2015) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9:22–34

    Article  PubMed  PubMed Central  Google Scholar 

  6. Handelsman J, Rodon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R242–R249

    Article  Google Scholar 

  7. Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vieites JM, Gauzzaroni M-E, Beloqui A, Golyshin PN, Ferrer M (2010) Molecular methods to study complex microbial communities. Methods Mol Biol 668:1–37

    Article  CAS  PubMed  Google Scholar 

  9. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    Article  CAS  PubMed  Google Scholar 

  10. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109

    Article  CAS  PubMed  Google Scholar 

  11. Vrancken K, Van Mellaert L, Anné J (2010) Cloning and expression vectors for a Gram-positive host, Streptomyces lividans. Methods Mol Biol 668:97–107

    Article  CAS  PubMed  Google Scholar 

  12. McMahon MD, Guan C, Handelsman J, Thomas MG (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78:3622–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Angelov A, Liebl W (2010) Heterologous gene expression in the hyperthermophilic Archaeon Sulfolobus solfataricus. Methods Mol Biol 668:109–116

    Article  CAS  PubMed  Google Scholar 

  14. Hildalgo A, Berenguer J (2013) Biotechnological applications of Thermus thermophilus as host. Curr Biotechnol 2:304–312

    Article  Google Scholar 

  15. Craig JW, Chang F-Y, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse Proteobacteria. Appl Environ Microbiol 76:1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burton S, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 30:35–46

    Google Scholar 

  17. Fortune BM (2014) Cloning and characterization of three compost metagenome-derived α-L-arabinofuranosidases with differing thermal stabilities. Dissertation, University of the Western Cape

    Google Scholar 

  18. Ohlhoff CW, Kirby BM, Van Zyl L, Mutepfab DLR, Casanuevaa A, Huddya RJ et al (2015) An unusual feruloyl esterase belonging to family VIII esterases and displaying a broad substrate range. J Mol Catal B Enzym 118:79–88

    Article  CAS  Google Scholar 

  19. Handelsman J, Liles M, Mann D, Riesenfeld C, Goodman RM (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255

    Article  CAS  Google Scholar 

  20. Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K (2014) Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta 1843:1750–1761

    Article  PubMed  Google Scholar 

  21. Horbal L, Fedorenko V, Luzhetskyy A (2014) Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98:8641–8655

    Article  CAS  PubMed  Google Scholar 

  22. Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD (2016) A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Genomics 17:86

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rabausch U, Juergensen J, Ilmberger N, Böhnke S, Fischer S, Schubach B et al (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 76:4551–4563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Smart, M., Huddy, R.J., Cowan, D.A., Trindade, M. (2017). Liquid Phase Multiplex High-Throughput Screening of Metagenomic Libraries Using p-Nitrophenyl-Linked Substrates for Accessory Lignocellulosic Enzymes. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 1539. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6691-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6691-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6689-9

  • Online ISBN: 978-1-4939-6691-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation