A Substrate Trap** Method for Identification of Direct Cdc14 Phosphatase Targets

  • Protocol
  • First Online:
The Mitotic Exit Network

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1505))

Abstract

Mitotic exit requires the inactivation of cyclin-dependent kinase (Cdk) activity and reversal of Cdk-mediated phosphorylation events by protein phosphatases. In Saccharomyces cerevisiae the mitotic exit network (MEN) leads to activation and dispersal of the Cdc14 phosphatase throughout the cell following successful chromosome segregation. MEN-released Cdc14 is required for both full Cdk inactivation and dephosphorylation of Cdk substrates. While Cdc14 originally was thought to act broadly on mitotic Cdk substrates, recent biochemical studies revealed that Cdc14 possesses a strong preference for a subset of Cdk phosphorylation sites. This intrinsic specificity appears well conserved across fungi and animals. Identifying the direct physiological substrates of Cdc14 is an important step in fully understanding its biological functions, both in yeast and other species. Despite its strict specificity for phosphoserine Cdk sites, Cdc14 is structurally and mechanistically related to protein tyrosine phosphatases (PTPs). Like other PTPs, mutation of catalytic residues in the Cdc14 active site creates an inactive enzyme that retains high affinity substrate binding. Here we describe a protocol for using such “substrate trap” variants to biochemically isolate and detect direct substrates by co-immunopurification. The protocol is written for use in S. cerevisiae, but should be easily adaptable to other research organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morgan DO (2007) The cell cycle: principles of control. New Science Press Ltd., London

    Google Scholar 

  2. Enserink JM, Kolodner RD (2010) An overview of Cdk1-controlled targets and processes. Cell Div 5:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132–138

    Article  CAS  PubMed  Google Scholar 

  5. Skoufias D, Indorato R, Lacroix F, Panopoulos A, Margolis R (2007) Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed. J Cell Biol 179(4):671–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2(6):709–718

    Article  CAS  PubMed  Google Scholar 

  7. Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F (2015) Identification of Cdk targets that control cytokinesis. EMBO J 34(1):81–96

    Article  CAS  PubMed  Google Scholar 

  8. Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74(2):267–286

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Queralt E, Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20(6):661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232

    Article  CAS  PubMed  Google Scholar 

  11. Gray CH, Good VM, Tonks NK, Barford D (2003) The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBO J 22(14):3524–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK (2002) Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 13(7):2289–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mocciaro A, Berdougo E, Zeng K, Black E, Vagnarelli P, Earnshaw W, Gillespie D, Jallepalli P, Schiebel E (2010) Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J Cell Biol 189(4):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mocciaro A, Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123(Pt 17):2867–2876

    Article  CAS  PubMed  Google Scholar 

  15. Wei Z, Peddibhotla S, Lin H, Fang X, Li M, Rosen J, Zhang P (2011) Early-onset aging and defective DNA damage response in cdc14b-deficient mice. Mol Cell Biol 31(7):1470–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanchetot C, Chagnon M, Dube N, Halle M, Tremblay ML (2005) Substrate-trap** techniques in the identification of cellular PTP targets. Methods 35(1):44–53

    Article  CAS  PubMed  Google Scholar 

  17. Barford D, Das AK, Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  CAS  PubMed  Google Scholar 

  18. Taylor GS, Liu Y, Baskerville C, Charbonneau H (1997) The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J Biol Chem 272(38):24054–24063

    Article  CAS  PubMed  Google Scholar 

  19. Gray CH, Barford D (2003) Getting in the ring: proline-directed substrate specificity in the cell cycle proteins Cdc14 and CDK2-cyclinA3. Cell Cycle 2(6):500–502

    Article  CAS  PubMed  Google Scholar 

  20. Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen TH, Rossie S, Parker LL, Hall MC, Charbonneau H (2012) Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem 287(3):1662–1669

    Article  CAS  PubMed  Google Scholar 

  21. Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR (2015) FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 98(4):770–786

    Article  CAS  PubMed  Google Scholar 

  22. Eissler CL, Mazon G, Powers BL, Savinov SN, Symington LS, Hall MC (2014) The Cdk/Cdc14 module controls activation of the Yen1 Holliday junction resolvase to promote genome stability. Mol Cell 54(1):80–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller DP, Hall H, Chaparian R, Mara M, Mueller A, Hall MC, Shannon KB (2015) Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell 26(16):2913–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia Z, Barford D, Flint AJ, Tonks NK (1995) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268(5218):1754–1758

    Article  CAS  PubMed  Google Scholar 

  25. Chen JS, Broadus MR, McLean JR, Feoktistova A, Ren L, Gould KL (2013) Comprehensive proteomics analysis reveals new substrates and regulators of the fission yeast clp1/cdc14 phosphatase. Mol Cell Proteomics 12(5):1074–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloom J, Cristea IM, Procko AL, Lubkov V, Chait BT, Snyder M, Cross FR (2011) Global analysis of Cdc14 phosphatase reveals diverse roles in mitotic processes. J Biol Chem 286(7):5434–5445

    Article  CAS  PubMed  Google Scholar 

  27. Weiss EL (2012) Mitotic exit and separation of mother and daughter cells. Genetics 192(4):1165–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24(10):913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Powers, B.L., Hall, H., Charbonneau, H., Hall, M.C. (2017). A Substrate Trap** Method for Identification of Direct Cdc14 Phosphatase Targets. In: Monje-Casas, F., Queralt, E. (eds) The Mitotic Exit Network. Methods in Molecular Biology, vol 1505. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6502-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6502-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6500-7

  • Online ISBN: 978-1-4939-6502-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation