Molecular Detection of BCR-ABL in Chronic Myeloid Leukemia

  • Protocol
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1465))

Abstract

All chronic myeloid leukemia (CML) patients have the BCR-ABL fusion gene. The constitutively activated BCR-ABL tyrosine kinase is a critical pathogenetic event in CML. Tyrosine kinase inhibitors (TKIs), such as imatinib, are synthesized small molecules that primarily target BCR-ABL tyrosine kinases and have become a first-line treatment for CML. Detection of BCR-ABL transcript level by real-time quantitative polymerase chain reaction (RQ-PCR) is a clinical routine for evaluating TKI treatment efficacy and predicting long-term response. Furthermore, because they are a main TKI resistance mechanism, the BCR-ABL tyrosine kinase domain (TKD) point mutations that are detected by Sanger sequencing can help clinicians make decisions on subsequent treatment selections. Here, we present protocols for the two abovementioned molecular methods for CML analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  2. Bartram C, de Klein A, Hagemeijer A (1983) Translocation of c-abl oncogene correlates with the presence of the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306:277–280

    Article  CAS  PubMed  Google Scholar 

  3. Groffen J, Stephenson J, Heisterkamp N, de Klein A, Bartram C, Grosveld G (1984) Philadelphia chromosome breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99

    Article  CAS  PubMed  Google Scholar 

  4. Daley G, Van Etten R, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  CAS  PubMed  Google Scholar 

  5. Deininger M, Goldman J, Melo J (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356

    CAS  PubMed  Google Scholar 

  6. Melo JV (1997) BCR-ABL gene variants. Baillieres Clin Haematol 10:203–222

    Article  CAS  PubMed  Google Scholar 

  7. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Azam M, Neuberg D, Wright RD, Gilliland DG, Griffin JD (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  CAS  PubMed  Google Scholar 

  9. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401

    Article  CAS  PubMed  Google Scholar 

  10. Björkholm M, Ohm L, Eloranta S, Derolf A, Hultcrantz M, Sjöberg J, Andersson T, Höglund M, Richter J, Landgren O, Kristinsson SY, Dickman PW (2011) Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008. J Clin Oncol 29:2514–2520

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kantarjian H, O’Brien S, Jabbour E, Garcia-Manero G, Quintas-Cardama A, Shan J, Rios MB, Ravandi F, Faderl S, Kadia T, Borthakur G, Huang X, Champlin R, Talpaz M, Cortes J (2012) Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience. Blood 119:1981–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, Gathmann I, Bolton AE, van Hoomissen IC, Goldman JM, Radich JP, International Randomised Study of Interferon versus STI571 (IRIS) Study Group (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432

    Article  CAS  PubMed  Google Scholar 

  13. Hanfstein B, Müller MC, Hehlmann R, Erben P, Lauseker M, Fabarius A, Schnittger S, Haferlach C, Göhring G, Proetel U, Kolb HJ, Krause SW, Hofmann WK, Schubert J, Einsele H, Dengler J, Hänel M, Falge C, Kanz L, Neubauer A, Kneba M, Stegelmann F, Pfreundschuh M, Waller CF, Branford S, Hughes TP, Spiekermann K, Baerlocher GM, Pfirrmann M, Hasford J, Saußele S, Hochhaus A, SAKK; German CML Study Group (2012) Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia 26:2096–2102

    Article  CAS  PubMed  Google Scholar 

  14. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  15. vonBubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359:487–491

    Article  CAS  Google Scholar 

  16. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, Pane F, Müller MC, Ernst T, Rosti G, Porkka K, Baccarani M, Cross NC, Martinelli G (2011) BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118:1208–1215

    Article  CAS  PubMed  Google Scholar 

  17. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H, Hughes TP, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Martinelli G, Mayer J, Müller MC, Niederwieser D, Pane F, Radich JP, Rousselot P, Saglio G, Saußele S, Schiffer C, Silver R, Simonsson B, Steegmann JL, Goldman JM, Hehlmann R (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122:872–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN Guidelines): chronic myelogenous leukemia. Version 1.2015

    Google Scholar 

  19. Branford S, Hughes T (2006) Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol Med 125:69–92

    CAS  PubMed  Google Scholar 

  20. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G, Watzinger F, Lion T, van Dongen JJ, Hokland P, Gabert J (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia 17:2474–2486

    Article  CAS  PubMed  Google Scholar 

  21. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 17:2318–2357

    Article  CAS  PubMed  Google Scholar 

  22. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Branford S, Fletcher L, Cross NC, Müller MC, Hochhaus A, Kim DW, Radich JP, Saglio G, Pane F, Kamel-Reid S, Wang YL, Press RD, Lynch K, Rudzki Z, Goldman JM, Hughes T (2008) Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 112:3330–3338

    Article  CAS  PubMed  Google Scholar 

  24. Müller MC, Cross NC, Erben P, Schenk T, Hanfstein B, Ernst T, Hehlmann R, Branford S, Saglio G, Hochhaus A (2009) Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 23:1957–1963

    Article  PubMed  Google Scholar 

  25. Gruber FX, Hjorth-Hansen H, Mikkola I, Stenke L, Johansen T (2006) A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib. Leukemia 20:2057–2060

    Article  CAS  PubMed  Google Scholar 

  26. Curvo RP, Zalcberg IR, Scholl V, Pires V, Moellmann-Coelho A, Moreira MA (2008) A recurrent splicing variant without c-ABL Exon 7 in Imatinib-resistant patients. Leuk Res 32:508–510

    Article  CAS  PubMed  Google Scholar 

  27. Gaillard JB, Arnould C, Bravo S, Donadio D, Exbrayat C, Jourdan E, Reboul D, Chiesa J, Lavabre-Bertrand T (2010) Exon 7 deletion in the bcr-abl gene is frequent in chronic myeloid leukemia patients and is not correlated with resistance against imatinib. Mol Cancer Ther 9:3083–3089

    Article  CAS  PubMed  Google Scholar 

  28. Meggyesi N, Kalmár L, Fekete S, Masszi T, Tordai A, Andrikovics H (2012) Characterization of ABL exon 7 deletion by molecular genetic and bioinformatic methods reveals no association with imatinib resistance in chronic myeloid leukemia. Med Oncol 29:2136–2142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Bei**g Municipal Science and Technology Program (Z141100000214011) and the Nature Science Foundation of China (81570130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Jun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qin, YZ., Huang, XJ. (2016). Molecular Detection of BCR-ABL in Chronic Myeloid Leukemia. In: Li, S., Zhang, H. (eds) Chronic Myeloid Leukemia. Methods in Molecular Biology, vol 1465. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4011-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4011-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4009-7

  • Online ISBN: 978-1-4939-4011-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation