Tenets, Methods, and Applications of Multifractal Analysis in Neurosciences

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

The characteristics of biomedical signals are not captured by conventional measures like the average amplitude of the signal. The methodologies derived from fractal geometry have been a very useful approach to study the degree of irregularity of a signal. The monofractal analysis of a signal is defined by a single power-law exponent in assuming a scale invariance in time and space. However, temporal and spatial variation in scale invariant structure of the biomedical signal often appears. In this case, the multifractal analysis is well suited because it is defined by a multifractal spectrum of power-law exponents. There are several approaches to the implementation of this analysis and there are numerous ways to present these.

In this chapter, we review the use of multifractal analysis for the purpose of characterizing signals in neurosciences. After describing the tenets of multifractal analysis, we present the several approaches to the estimation of the multifractal spectrum. Finally, we describe the application of this spectrum on biomedical signals in the characterization of several diseases in neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi M, Grandchamp E. Texture features and segmentation based on multifractal approach. Prog Pattern Recog Image Anal Appl Proc. 2006;4225:297–305.

    Google Scholar 

  2. Benassi A, Cohen S, Istas J. Identifying the multifractional function of a Gaussian process. Stat Probab Lett. 1998;39(4):337–45.

    Article  Google Scholar 

  3. Bhatti A, Nahavandi S, Frayman Y. 3D depth estimation for visual inspection using in wavelet transform modulus maxima. Comput Electr Eng. 2007;33(1):48–57.

    Article  Google Scholar 

  4. Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ. 1973;81(3):637–54.

    Article  Google Scholar 

  5. Blesic S, Milosevic S, Stratimirovic D, Ljubisavljevic M. Detrended fluctuation analysis of time series of a firing fusimotor neuron. Phys A. 1999;268(3–4):275–82.

    Article  Google Scholar 

  6. Broniatowski M, Mignot P. A self-adaptive technique for the estimation of the multifractal spectrum. Stat Probab Lett. 2001;54(2):125–35.

    Article  Google Scholar 

  7. Buldyrev SV, Dokholyan NV, Havlin S, Stanley HE, Stanley RHR. Expansion of tandem repeats and oligomer clustering in coding and noncoding DNA sequences. Phys A. 1999;273(1–2):19–32.

    Article  CAS  Google Scholar 

  8. Chhabra A, Jensen R. Direct determination of the f(alpha) singularity spectrum. Phys Rev Lett. 1989;62(2):1327–30.

    Article  PubMed  Google Scholar 

  9. Ciuciu P, Abry P, Rabrait C, Wendt H. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity. IEEE J-Stsp. 2008;2(6):929–43.

    Google Scholar 

  10. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A. Scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol. 2012;3:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuevas E. f(alpha) multifractal spectrum at strong and weak disorder. Phys Rev B. 2003;68(2).

    Google Scholar 

  12. De Bartolo SG, Gaudio R, Gabriele S. Multifractal analysis of river networks: sandbox approach. Water Resour Res. 2004;40(2).

    Google Scholar 

  13. Eke A, Herman P, Sanganahalli BG, Hyder F, Mukli P, Nagy Z. Pitfalls in fractal time series analysis: fMRI BOLD as an exemplary case. Front Physiol. 2012;3:417.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feeny BF. Fast multifractal analysis by recursive box covering. Int J Bifurcat Chaos. 2000;10(9):2277–87.

    Article  Google Scholar 

  15. Gadhoumi K, Gotman J, Lina JM. Scale invariance properties of intracerebral EEG improve seizure prediction in mesial temporal lobe epilepsy. PLoS One. 2015;10(4):e0121182.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gu GF, Zhou WX. Detrending moving average algorithm for multifractals. Phys Rev E. 2010;82(1).

    Google Scholar 

  17. He BJ. Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci: Off J Soc Neurosci. 2011;31(39):13786–95.

    Article  CAS  Google Scholar 

  18. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Phys Stat Mech Appl. 2002;316(1–4):87–114.

    Google Scholar 

  19. Kestener P, Arneodo A. Three-dimensional wavelet-based multifractal method: the need for revisiting the multifractal description of turbulence dissipation data. Phys Rev Lett. 2003;91(19).

    Google Scholar 

  20. Kestener P, Arneodo A. Generalizing the wavelet-based multifractal formalism to random vector fields: application to three-dimensional turbulence velocity and vorticity data. Phys Rev Lett. 2004;93(4).

    Google Scholar 

  21. Khalil A, Joncas G, Nekka F, Kestener P, Arneodo A. Morphological analysis of H I features. II. Wavelet-based multifractal formalism. Astrophys J Suppl Ser. 2006;165(2):512–50.

    Article  CAS  Google Scholar 

  22. Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Doklady Akademia Nausk SSSR. 1941;30:301–5.

    Google Scholar 

  23. Lapidus ML, van Frankenhuijsen M. Fractality, self-similarity and complex dimensions. P Symp Pure Math. 2004;72:349–72.

    Article  Google Scholar 

  24. Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, Hagihira S, Li X. EEG entropy measures in anesthesia. Front Comput Neurosci. 2015;9:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, Betrouni N. Prostate cancer characterization on MR images using fractal features. Med Phys. 2011;38(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  26. Lopes R, Steinling M, Szurhaj W, Maouche S, Dubois P, Betrouni N. Fractal features for localization of temporal lobe epileptic foci using SPECT imaging. Comput Biol Med. 2010;40(5):469–77.

    Article  CAS  PubMed  Google Scholar 

  27. Mandelbrot B. The fractal geometry of nature. San Francisco: Freeman; 1983.

    Google Scholar 

  28. Mandelbrot B. Fractals and scaling in finance: discontinuity, concentration, risk. New York: Springer; 1997.

    Book  Google Scholar 

  29. Mandelbrot BB, Van Ness JW. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968;10:422–37.

    Article  Google Scholar 

  30. Matic V, Cherian PJ, Koolen N, Ansari AH, Naulaers G, Govaert P, Van Huffel S, De Vos M, Vanhatalo S. Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis. Front Hum Neurosci. 2015;9:189.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meyer Y. Wavelets: algorithms and applications. SIAM Press: Philadelphia; 1993.

    Google Scholar 

  32. Muzy JF, Bacry E, Arneodo A. Wavelets and multifractal formalism for singular signals – application to turbulence data. Phys Rev Lett. 1991;67(25):3515–8.

    Article  PubMed  Google Scholar 

  33. Ni H, Zhou L, Ning X, Wang L, Alzheimer’s Disease Neuroimaging I. Exploring multifractal-based features for mild Alzheimer’s disease classification. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med. 2015.

    Google Scholar 

  34. Parisi G, Frisch U. On the singularity structure of fully developed turbulence. In: Ghil RBR, Parisi G, editors. Turbulence and predictability in geophysical fluid dynamics. Proceedings International School of Physics “E. Fermi”, Amsterdam; 1985.

    Google Scholar 

  35. Polonnikov RI, Wasserman EL, Kartashev NK. Regular developmental changes in EEG multifractal characteristics. Int J Neurosci. 2003;113(11):1615–39.

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu Y, Barth M, Windischberger C, Moser E, Thurner S. Wavelet-based multifractal analysis of fMRI time series. Neuroimage. 2004;22(3):1195–202.

    Article  PubMed  Google Scholar 

  37. Takahashi T, Murata T, Narita K, Hamada T, Kosaka H, Omori M, Takahashi K, Kimura H, Yoshida H, Wada Y. Multifractal analysis of deep white matter microstructural changes on MRI in relation to early-stage atherosclerosis. Neuroimage. 2006;32(3):1158–66.

    Article  PubMed  Google Scholar 

  38. Touchette H, Beck C. Nonconcave entropies in multifractals and the thermodynamic formalism. J Stat Phys. 2005;125:455–71.

    Article  Google Scholar 

  39. Veneziano D, Moglen GE, Bras RL. Multifractal analysis – pitfalls of standard procedures and alternatives. Phys Rev E. 1995;52(2):1387–98.

    Article  CAS  Google Scholar 

  40. Vicsek T. Mass multifractals. Phys A. 1990;168:490–7.

    Article  Google Scholar 

  41. Wang J, Ning XB, Ma QL, Bian CH, Xu YL, Chen Y. Multiscale multifractality analysis of a 12-lead electrocardiogram. Phys Rev E. 2005;71(6).

    Google Scholar 

  42. Weiss B, Clemens Z, Bodizs R, Vago Z, Halasz P. Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG. J Neurosci Methods. 2009;185(1):116–24.

    Article  PubMed  Google Scholar 

  43. Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Proc Mag. 2007;24(4):38–48.

    Article  Google Scholar 

  44. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp. 2008;29(7):791–801.

    Article  PubMed  Google Scholar 

  45. Zorick T, Mandelkern MA. Multifractal detrended fluctuation analysis of human EEG: preliminary investigation and comparison with the wavelet transform modulus maxima technique. PLoS One. 2013;8(7), e68360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lopes, R., Ayache, A. (2016). Tenets, Methods, and Applications of Multifractal Analysis in Neurosciences. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_4

Download citation

Publish with us

Policies and ethics

Navigation