Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer

  • Protocol
  • First Online:
The Tumor Microenvironment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1458))

Abstract

Patient-derived xenograft (PDX) models provide an excellent platform to understand cancer initiation and development in vivo. In the context of brain tumor initiating cells (BTICs), PDX models allow for characterization of tumor formation, growth, and recurrence, in a clinically relevant in vivo system. Here, we detail procedures to harvest, culture, characterize, and orthotopically inject human BTICs derived from patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  2. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  CAS  PubMed  Google Scholar 

  3. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A (2009) Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood 113:3287–3296

    Article  CAS  PubMed  Google Scholar 

  5. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  CAS  PubMed  Google Scholar 

  6. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  8. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  9. **n L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 102:6942–6947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batts TD, Machado HL, Zhang Y, Creighton CJ, Li Y, Rosen JM (2011) Stem cell antigen-1 (sca-1) regulates mammary tumor development and cell migration. PLoS One 6:e27841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F (2005) Cancer stem cell characteristics in retinoblastoma. Mol Vis 11:729–737

    CAS  PubMed  Google Scholar 

  12. Du L, Wang H, He L, Zhang J, Ni B, Wang X et al (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14:6751–6760

    Article  CAS  PubMed  Google Scholar 

  13. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  CAS  PubMed  Google Scholar 

  15. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793

    Article  CAS  PubMed  Google Scholar 

  16. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100:15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  19. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  20. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  22. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  23. Kaye AH, Morstyn G, Gardner I, Pyke K (1986) Development of a xenograft glioma model in mouse brain. Cancer Res 46:1367–1373

    CAS  PubMed  Google Scholar 

  24. Rana MW, Pinkerton H, Thornton H, Nagy D (1977) Heterotransplantation of human glioblastoma multiforme and meningioma to nude mice. Proc Soc Exp Biol Med 155:85–88

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro WR, Basler GA, Chernik NL, Posner JB (1979) Human brain tumor transplantation into nude mice. J Natl Cancer Inst 62:447–453

    CAS  PubMed  Google Scholar 

  26. Shultz LD, Brehm MA, Bavari S, Greiner DL (2011) Humanized mice as a preclinical tool for infectious disease and biomedical research. Ann N Y Acad Sci 1245:50–54

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chokshi, C., Dhillon, M., McFarlane, N., Venugopal, C., Singh, S.K. (2016). Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer. In: Ursini-Siegel, J., Beauchemin, N. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 1458. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3801-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3801-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3799-8

  • Online ISBN: 978-1-4939-3801-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation