Bone Tissue Engineering: Past–Present–Future

  • Protocol
  • First Online:
Mesenchymal Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1416))

Abstract

Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing “stemness”. Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as “promising approaches”, but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bosch P, Musgrave DS, Lee JY et al (2000) Osteoprogenitor cells within skeletal muscle. J Orthop Res 18:933–944

    Article  CAS  PubMed  Google Scholar 

  2. Doherty MJ, Ashton BA, Walsh S et al (1998) Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 13:828–838

    Article  CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    CAS  PubMed  Google Scholar 

  4. Huang JI, Beanes SR, Zhu M et al (2002) Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg 109:1033–1041, discussion 1042–1043

    Article  PubMed  Google Scholar 

  5. Levy MM, Joyner CJ, Virdi AS et al (2001) Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 29:317–322

    Article  CAS  PubMed  Google Scholar 

  6. Mizuno S, Glowacki J (1996) Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials 17:1819–1825

    Article  CAS  PubMed  Google Scholar 

  7. Schantz JT, Hutmacher DW, Chim H et al (2002) Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Cell Transplant 11:125–138

    PubMed  Google Scholar 

  8. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  9. Antonucci I, Stuppia L, Kaneko Y et al (2011) Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant 20:789–795

    Article  PubMed  Google Scholar 

  10. Poloni A, Maurizi G, Babini L et al (2011) Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant 20:643–654

    Article  PubMed  Google Scholar 

  11. Ioan-Facsinay A, Kloppenburg M (2011) An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis Res Ther 15:225

    Article  Google Scholar 

  12. Fan J, Varshney RR, Ren L et al (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86

    Article  CAS  PubMed  Google Scholar 

  13. Corrao S, La Rocca G, Lo Iacono M et al (2013) Umbilical cord revisited: from Wharton's jelly myofibroblasts to mesenchymal stem cells. Histol Histopathol 28:1235–1244

    PubMed  Google Scholar 

  14. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  CAS  PubMed  Google Scholar 

  16. Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85:929–940

    CAS  PubMed  Google Scholar 

  17. Lennon DP, Haynesworth SE, Young RG et al (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 219:211–222

    Article  CAS  PubMed  Google Scholar 

  18. Locklin RM, Oreffo RO, Triffitt JT (1999) Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biol Int 23:185–194

    Article  CAS  PubMed  Google Scholar 

  19. Quito FL, Beh J, Bashayan O et al (1996) Effects of fibroblast growth factor-4 (k-FGF) on long-term cultures of human bone marrow cells. Blood 87:1282–1291

    CAS  PubMed  Google Scholar 

  20. Bartholomew A, Patil S, Mackay A et al (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 12:1527–1541

    Article  CAS  PubMed  Google Scholar 

  21. Chuah MK, Van Damme A, Zwinnen H et al (2000) Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 11:729–738

    Article  CAS  PubMed  Google Scholar 

  22. Daga A, Muraglia A, Quarto R et al (2002) Enhanced engraftment of EPO-transduced human bone marrow stromal cells transplanted in a 3D matrix in non-conditioned NOD/SCID mice. Gene Ther 9:915–921

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno H, Zuk PA, Zhu M et al (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209, discussion 210-211

    Article  PubMed  Google Scholar 

  24. Luria EA, Panasyuk AF, Friedenstein AY (1971) Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11:345–349

    Article  CAS  PubMed  Google Scholar 

  25. Lange C, Kaltz C, Thalmeier K et al (1999) Hematopoietic reconstitution of syngeneic mice with a peripheral blood-derived, monoclonal CD34-, Sca-1+, Thy-1(low), c-kit + stem cell line. J Hematother Stem Cell Res 8:335–342

    Article  CAS  PubMed  Google Scholar 

  26. Hoogduijn MJ, Verstegen MM, Engela AU et al (2014) No evidence for circulating mesenchymal stem cells in patients with organ injury. Stem Cells Dev 23:2328–2335

    Article  PubMed  Google Scholar 

  27. Breton P, Freidel M (1993) Hydroxyapatite in orthognathic surgery. Animal experimentation and clinical applications. Rev Stomatol Chir Maxillofac 94:115–119

    CAS  PubMed  Google Scholar 

  28. Chappard D, Zhioua A, Grizon F et al (1993) Biomaterials for bone filling: comparisons between autograft, hydroxyapatite and one highly purified bovine xenograft. Bull Assoc Anat (Nancy) 77:59–65

    CAS  Google Scholar 

  29. Erickson D (1991) Binding bone. Will new bioceramic coatings improve orthopedic implants? Sci Am 265:101–102

    Google Scholar 

  30. Heise U, Osborn JF, Duwe F (1990) Hydroxyapatite ceramic as a bone substitute. Int Orthop 14:329–338

    Article  CAS  PubMed  Google Scholar 

  31. Oonishi H (1991) Orthopaedic applications of hydroxyapatite. Biomaterials 12:171–178

    Article  CAS  PubMed  Google Scholar 

  32. Langstaff S, Sayer M, Smith TJ et al (1999) Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials 20:1727–1741

    Article  CAS  PubMed  Google Scholar 

  33. Johnson KD, Frierson KE, Keller TS et al (1996) Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res 14:351–369

    Article  CAS  PubMed  Google Scholar 

  34. Kuhne JH, Bartl R, Frisch B et al (1994) Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand 65:246–252

    Article  CAS  PubMed  Google Scholar 

  35. Sartoris DJ, Holmes RE, Resnick D (1992) Coralline hydroxyapatite bone graft substitutes: radiographic evaluation. J Foot Surg 31:301–313

    CAS  PubMed  Google Scholar 

  36. Misch CE, Dietsh F (1993) Bone-grafting materials in implant dentistry. Implant Dent 2:158–167

    Article  CAS  PubMed  Google Scholar 

  37. Mastrogiacomo M, Papadimitropoulos A, Cedola A et al (2007) Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption. Biomaterials 28:1376–1384

    Article  CAS  PubMed  Google Scholar 

  38. Steinert AF, Rackwitz L, Gilbert F et al (2012) Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 1:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herrmann RP, Sturm MJ (2014) Adult human mesenchymal stromal cells and the treatment of graft versus host disease. Stem Cells Cloning 7:45–52

    PubMed  PubMed Central  Google Scholar 

  40. Battiwalla M, Barrett AJ (2014) Bone marrow mesenchymal stromal cells to treat complications following allogeneic stem cell transplantation. Tissue Eng Part B Rev 20:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  41. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101

    Article  PubMed  Google Scholar 

  42. Giannoni P, Scaglione S, Daga A et al (2010) Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A 16:489–499

    Article  CAS  PubMed  Google Scholar 

  43. Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7:395–406

    Article  CAS  PubMed  Google Scholar 

  44. Sart S, Ma T, Li Y (2014) Preconditioning stem cells for in vivo delivery. Biores Open Access 3:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giannoni P, Cancedda R (2004) Regulatory issues: down to the bare bones. In: Petit H, Quarto R (eds) Engineering bone. Landes Bioscience Publishers, Georgetown, TX, pp 205–219

    Google Scholar 

  46. Pietila M, Lehtonen S, Narhi M et al (2010) Mitochondrial function determines the viability and osteogenic potency of human mesenchymal stem cells. Tissue Eng Part C Methods 16:435–445

    Article  PubMed  Google Scholar 

  47. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chastain SR, Kundu AK, Dhar S et al (2006) Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A 78:73–85

    Article  PubMed  Google Scholar 

  49. Hamidouche Z, Hay E, Vaudin P et al (2008) FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signaling-dependent Runx2 expression. FASEB J 22:3813–3822

    Article  CAS  PubMed  Google Scholar 

  50. Lee JW, Juliano R (2004) Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells 17:188–202

    CAS  PubMed  Google Scholar 

  51. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  52. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  53. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  CAS  PubMed  Google Scholar 

  54. Dahl KN, Engler AJ, Pajerowski JD et al (2005) Power-law rheology of isolated nuclei with deformation map** of nuclear substructures. Biophys J 89:2855–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dalby MJ, Gadegaard N, Herzyk P et al (2007) Nanomechanotransduction and interphase nuclear organization influence on genomic control. J Cell Biochem 102:1234–1244

    Article  CAS  PubMed  Google Scholar 

  56. Balasundaram G, Sato M, Webster TJ (2006) Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 27:2798–2805

    Article  CAS  PubMed  Google Scholar 

  57. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L, Rodriguez J, Raez J et al (2009) Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology 20:175101

    Article  PubMed  Google Scholar 

  59. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    Article  CAS  PubMed  Google Scholar 

  60. Eisenbarth E, Velten D, Breme J (2007) Biomimetic implant coatings. Biomol Eng 24:27–32

    Article  CAS  PubMed  Google Scholar 

  61. Nicula R, Luthen F, Stir M et al (2007) Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Biomol Eng 24:564–567

    Article  CAS  PubMed  Google Scholar 

  62. Dalby MJ, McCloy D, Robertson M et al (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27:2980–2987

    Article  CAS  PubMed  Google Scholar 

  63. Dalby MJ, McCloy D, Robertson M et al (2006) Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 27:1306–1315

    Article  CAS  PubMed  Google Scholar 

  64. Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357

    Article  CAS  PubMed  Google Scholar 

  66. Franceschi RT, **ao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454

    Article  CAS  PubMed  Google Scholar 

  67. **ao G, Jiang D, Thomas P et al (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275:4453–4459

    Article  CAS  PubMed  Google Scholar 

  68. Keselowsky BG, Collard DM, Garcia AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A 102:5953–5957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fu RH, Wang YC, Liu SP et al (2011) Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant 20:37–47

    Article  PubMed  Google Scholar 

  70. Uygun BE, Stojsih SE, Matthew HW (2009) Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A 15:3499–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benoit DS, Schwartz MP, Durney AR et al (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gorsline RT, Tangkawattana P, Lannutti JJ et al (2010) Accelerated chondrogenesis in nanofiber polymeric scaffolds embedded with BMP-2 genetically engineered chondrocytes. J Biomed Sci Eng 3:908–916

    Article  CAS  Google Scholar 

  73. Anderson JM, Kushwaha M, Tambralli A et al (2009) Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 10:2935–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen XD, Dusevich V, Feng JQ et al (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956

    Article  CAS  PubMed  Google Scholar 

  75. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    Article  CAS  PubMed  Google Scholar 

  76. Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  77. Vacanti CA, Bonassar LJ, Vacanti MP et al (2001) Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 344:1511–1514

    Article  CAS  PubMed  Google Scholar 

  78. Araki R, Uda M, Hoki Y et al (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494:100–104

    Article  CAS  PubMed  Google Scholar 

  79. Nazor KL, Altun G, Lynch C et al (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10:620–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meng X, Su RJ, Baylink DJ et al (2013) Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor. Cell Res 23:658–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  82. Downing TL, Soto J, Morez C et al (2013) Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 12:1154–1162

    Article  CAS  PubMed  Google Scholar 

  83. Dellatore SM, Garcia AS, Miller WM (2008) Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 19:534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thibault RA, Scott Baggett L, Mikos AG et al (2010) Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A 16:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berry FB, Mirzayans F, Walter MA (2006) Regulation of FOXC1 stability and transcriptional activity by an epidermal growth factor-activated mitogen-activated protein kinase signaling cascade. J Biol Chem 281:10098–10104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Quarto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Quarto, R., Giannoni, P. (2016). Bone Tissue Engineering: Past–Present–Future. In: Gnecchi, M. (eds) Mesenchymal Stem Cells. Methods in Molecular Biology, vol 1416. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3584-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3584-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3582-6

  • Online ISBN: 978-1-4939-3584-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation