Use of Nanobodies to Localize Endogenous Cytoskeletal Proteins and to Determine Their Contribution to Cancer Cell Invasion by Using an ECM Degradation Assay

  • Protocol
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

There are numerous ways to study actin cytoskeletal structures, and thereby identify the underlying mechanisms of organization and their regulating proteins. Traditional approaches make use of protein overexpression or siRNA. However to study or modulate resident endogenous proteins, complementary methods are required. Since the discovery of nanobodies in 1993, they have proven to represent interesting tools in a variety of applications due to their high affinity, solubility, and stability. Especially their intracellular functionality makes them ideally suited for the study of actin cytoskeletal regulation.

Here we provide a protocol to clone nanobody cDNAs in frame with an EGFP or mCherry fluorescent tag. We explain how to transfect this fusion protein in eukaryotic (cancer) cells and how to perform immunofluorescence. This allows microscopic analysis of endogenous (cytoskeletal) proteins and gives insight into their endogenous localization. Moreover, we outline an extracellular matrix (ECM) degradation assay as an application of the general protocol. By seeding cells onto a fluorescently labeled gelatin matrix, degradation can be quantified by means of a matrix degradation index. This assay demonstrates the contribution of a protein during cancer cell invasiveness in vitro and the potential of a nanobody to inhibit this degradation through modulation of its target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773(5):642–652. doi:10.1016/j.bbamcr.2006.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9(10):1110–1121. doi:10.1038/ncb1007-1110

    Article  CAS  PubMed  Google Scholar 

  3. Ridley AJ (2011) Life at the leading edge. Cell 145(7):1012–1022. doi:10.1016/j.cell.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  4. Winder SJ, Ayscough KR (2005) Actin-binding proteins. J Cell Sci 118(Pt 4):651–654. doi:10.1242/jcs.01670

    Article  CAS  PubMed  Google Scholar 

  5. Gross SR (2013) Actin binding proteins: their ups and downs in metastatic life. Cell Adh Migr 7(2):199–213. doi:10.4161/cam.23176

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yamaguchi H (2012) Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol 91(11-12):902–907. doi:10.1016/j.ejcb.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  7. Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17(3):107–117. doi:10.1016/j.tcb.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  9. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227(3):707–711. doi:10.1006/bbrc.1996.1573

    Article  CAS  PubMed  Google Scholar 

  10. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448. doi:10.1038/363446a0

    Article  CAS  PubMed  Google Scholar 

  11. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797. doi:10.1146/annurev-biochem-063011-092449

    Article  CAS  PubMed  Google Scholar 

  12. Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S (2013) Nanobodies and their potential applications. Nanomedicine 8(6):1013–1026. doi:10.2217/nnm.13.86

    Article  CAS  PubMed  Google Scholar 

  13. Delanote V, Vanloo B, Catillon M, Friederich E, Vandekerckhove J, Gettemans J (2010) An alpaca single-domain antibody blocks filopodia formation by obstructing L-plastin-mediated F-actin bundling. FASEB J 24(1):105–118. doi:10.1096/fj.09-134304

    Article  PubMed  Google Scholar 

  14. De Clercq S, Boucherie C, Vandekerckhove J, Gettemans J, Guillabert A (2013) L-plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages. PLoS One 8(11):e78108. doi:10.1371/journal.pone.0078108

    Article  PubMed Central  PubMed  Google Scholar 

  15. De Clercq S, Zwaenepoel O, Martens E, Vandekerckhove J, Guillabert A, Gettemans J (2013) Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation. Cell Mol Life Sci 70(5):909–922. doi:10.1007/s00018-012-1169-0

    Article  PubMed  Google Scholar 

  16. Van Audenhove I, Boucherie C, Pieters L, Zwaenepoel O, Vanloo B, Martens E, Verbrugge C, Hassanzadeh-Ghassabeh G, Vandekerckhove J, Cornelissen M, De Ganck A, Gettemans J (2014) Stratifying fascin and cortactin function in invadopodium formation using inhibitory nanobodies and targeted subcellular delocalization. FASEB J 28(4):1805–1818. doi:10.1096/fj.13-242537

    Article  PubMed  Google Scholar 

  17. Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C, Martens E, Zwaenepoel O, Hassanzadeh-Ghassabeh G, Vandekerckhove J, Gevaert K, Fernandez LA, Sanders NN, Gettemans J (2013) A nanobody targeting the F-actin cap** protein CapG restrains breast cancer metastasis. Breast Cancer Res 15(6):R116. doi:10.1186/bcr3585

    Article  PubMed Central  PubMed  Google Scholar 

  18. Van Overbeke W, Verhelle A, Everaert I, Zwaenepoel O, Vandekerckhove J, Cuvelier C, Derave W, Gettemans J (2014) Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model. Mol Ther 22:1768. doi:10.1038/mt.2014.132

    Article  PubMed Central  PubMed  Google Scholar 

  19. Van Audenhove I, Van Impe K, Ruano-Gallego D, De Clercq S, De Muynck K, Vanloo B, Verstraete H, Fernandez LA, Gettemans J (2013) Map** cytoskeletal protein function in cells by means of nanobodies. Cytoskeleton 70:604. doi:10.1002/cm.21122

    Article  PubMed  Google Scholar 

  20. Ghassabeh GH, Saerens D, Muyldermans S (2010) Isolation of antigen-specific nanobodies. In: Kontermann R, Dübel S (eds) Antibody engineering, vol 2. Springer, Berlin. doi:10.1007/978-3-642-01147-4_20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Gettemans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van Audenhove, I., Gettemans, J. (2016). Use of Nanobodies to Localize Endogenous Cytoskeletal Proteins and to Determine Their Contribution to Cancer Cell Invasion by Using an ECM Degradation Assay. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation