Nutritional Value

  • Chapter
  • First Online:
Grain Legumes

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 10))

Abstract

Grain legumes are a recognized important dietary source of nutrients for human welfare, either directly, as a component of the diet, or indirectly, being used to feed livestock. Legume seeds provide an exceptional variety of essential nutrients including proteins, fibres, minerals and vitamins; nevertheless, they also contain bioactive and/or antinutritional compounds, such as phytate, oligosaccharides, phenolic compounds, nonprotein amino acids, lectins and enzyme inhibitors that play metabolic roles in humans or animals and whose effects may be regarded as positive, negative or both. In this chapter, the main classes of these compounds, together with some minor species-specific ones, are described in relation to their biological activities, abundance in grain legume seeds and role in nutrition and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abete I, Parra D, Martinez JA (2009) Legume-, fish-, or high-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J Med Food 12:100–108

    Article  CAS  PubMed  Google Scholar 

  • Abeysekara S, Chilibeck PD, Vatanparast H et al (2012) A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br J Nutr 108(Suppl 1):S103–S110

    Article  CAS  PubMed  Google Scholar 

  • Adeparusi E (2001) Effect of processing on the nutrients and anti-nutrients of lima bean (Phaseolus lunatus L.) flour. Nahrung-Food 45:94–96

    Article  CAS  Google Scholar 

  • Aller E, Abete I, Astrup A et al (2011) Starches, sugars and obesity. Nutrients 3:341–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alli I, Baker BE (1980) Constitution of leguminous seeds: the microscopic structure of proteins isolated from Phaseolus beans. J Sci Food Agric 31:1316–1322

    Article  CAS  Google Scholar 

  • Amarakoon D, Thavarajah D, McPhee K et al (2012) Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. J Food Compos Anal 27:8–13

    Article  CAS  Google Scholar 

  • Anderson JW, Major AW (2002) Pulses and lipaemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr 88(Suppl 3):S263–271

    Article  CAS  PubMed  Google Scholar 

  • Anderson JW, Story L, Sieling B et al (1984) Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Clin Nutr 40:1146–1155

    CAS  PubMed  Google Scholar 

  • Archer S, Meng S, Wu J et al (1998) Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery 124:248–253

    Article  CAS  PubMed  Google Scholar 

  • Atkinson F, Foster-Powell K, Brand-Miller J (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2281–2283

    Article  PubMed Central  PubMed  Google Scholar 

  • Bardocz S, Grant G, Pusztai A (1996) The effect of phytohaemagglutinin at different dietary concentrations on the growth, body composition and plasma insulin of the rat. Br J Nutr 76:613–626

    Article  CAS  PubMed  Google Scholar 

  • Bardocz S, Grant G, Duguid TJ et al (1997) Intracellular levels of polyamines in Krebs II lymphosarcoma cells in mice fed phytohaemagglutinin-containing diets are coupled with altered tumour growth. Cancer Lett 121:25–29

    Article  CAS  PubMed  Google Scholar 

  • Barnard JA, Warwick G (1993) Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ 4:495–501

    CAS  PubMed  Google Scholar 

  • Barrett ML, Udani JK (2011) A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J 10:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Bauer-Marinovic M, Florian S, Müller-Schmehl K (2006) Dietary resistant starch type 3 prevents tumor induction by 1,2-dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon. Carcinogenesis 27:1849–1859

    Article  CAS  PubMed  Google Scholar 

  • Bazzano LA, He J, Ogden LG et al (2001) Legume consumption and risk of coronary heart disease in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med 161:2573–2578

    Article  CAS  PubMed  Google Scholar 

  • Bazzano LA, Thompson AM, Tees MT et al (2011) Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 21:94–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blair M, Izquierdo P, Astudillo C et al (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bobe G, Barrett KG, Mentor-Marcel RA et al (2008) Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced ob/ob mice. Nutr Cancer 60:373–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bollini R, Carnovale E, Campion B (1999) Removal of antinutritional factors from bean Phaseolus vulgaris seeds. Biotechnol Agron Soc Environ 3:217–219

    CAS  Google Scholar 

  • Buddington R, Kelly-Quagliana K, Buddington K et al (2002) Non-digestible oligosaccharides and defense functions: lessons learned from animal models. Br J Nutr 87:S231–S239

    Article  CAS  Google Scholar 

  • Burbano C, Muzquiz M, Ayet G et al (1999) Evaluation of antinutritional factors of selected varieties of Phaseolus vulgaris. J Sci Food Agric 79:1468–1472

    Article  CAS  Google Scholar 

  • Burstin J, Gallardo K, Mir R et al (2011) Improving protein content and nutrition quality. In: Pratrap A, Kumar J (eds) Biology and breeding of food legumes. CABI, New Delhi, pp 314–328

    Chapter  Google Scholar 

  • Cabrera C, Lloris F, Gimenez R et al (2003) Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Sci Total Environ 308:1–14

    Article  CAS  PubMed  Google Scholar 

  • Caldas G, Blair M (2009) Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:131–142

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Perrone D, Galasso I et al (2009a) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breeding 128:199–204

    Article  CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E et al (2009b) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Glahn R, Tava A et al (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Res 141:27–37

    Article  Google Scholar 

  • Campos-Vega R, Loarca-Pina G, Oomah B (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

    Article  CAS  Google Scholar 

  • Carbonaro M, Maselli P, Nucara A (2012) Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: a Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 43:911–921

    Article  CAS  PubMed  Google Scholar 

  • Celleno L, Tolaini MV, D’Amore A et al (2007) A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci 4:45–52

    Article  PubMed Central  PubMed  Google Scholar 

  • Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:S307–S319

    Article  CAS  Google Scholar 

  • Chang WW, Yu CY, Lin TW et al (2006) Soyasaponin I decreases the expression of alpha2,3-linked sialic acid on the cell surface and suppresses the metastatic potential of B16F10 melanoma cells. Biochem Biophys Res Commun 341:614–619

    Article  CAS  PubMed  Google Scholar 

  • Chibbar R, Ambigaipalan P, Hoover R. (2010) Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chem 7:342–52

    Article  CAS  Google Scholar 

  • Chitra U, Vimala V, Singh U et al (1995) Variability in phytic acid content and protein digestibility of grain legumes. Plant Foods Hum Nutr 47:163–172

    Article  CAS  PubMed  Google Scholar 

  • Chitra U, Singh U, Rao P (1996) Phytic acid, in vitro protein digestibility, dietary fiber, and minerals of pulses as influenced by processing methods. Plant Foods Hum Nutr 49:307–316

    Article  CAS  PubMed  Google Scholar 

  • Chokshi D (2006) Toxicity studies of blockal, a dietary supplement containing phase 2 starch neutralizer (phase 2), a standardized extract of the common white kidney bean (Phaseolus vulgaris). Int J Toxicol 25:361–371

    Article  CAS  PubMed  Google Scholar 

  • Chrispeeels M, Raikhel N (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3:1–9

    Article  Google Scholar 

  • Clemente A, Gee JM, Johnson IT et al (2005) Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro. J Agr Food Chem 53:8979–8986

    Article  CAS  Google Scholar 

  • Clemente A, Sonnante G, Domoney C (2011) Bowman-Birk inhibitors from legumes and human gastrointestinal health: current status and perspectives. Curr Protein Pept Sci 12:358–373

    Article  CAS  PubMed  Google Scholar 

  • Cobiac L, McArthur R, Nestel PJ (1990) Can eating baked beans lower plasma cholesterol? Eur J Clin Nutr 44:819–822

    CAS  PubMed  Google Scholar 

  • Confalonieri M, Bollini R, Berardo N et al (1992) Influence of phytohaemagglutinin

    Google Scholar 

  • on the agronomic performance of beans (Phaseolus vulgaris L). Plant Breeding 109:329–334

    Google Scholar 

  • Consonni A, Lovati M, Parolari A et al (2011) Heterologous expression and purification of the soybean 7S globulin alpha’ subunit extension region: in vitro evidence of its involvement in cell cholesterol homeostasis. Protein Expr Purif 80:125–129

    Article  CAS  PubMed  Google Scholar 

  • Crepon K, Marget P, Peyronnet C et al (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339

    Article  Google Scholar 

  • de Graaf C, Blom WA, Smeets PA et al (2004) Biomarkers of satiation and satiety. Am J Clin Nutr 79:946–961

    CAS  PubMed  Google Scholar 

  • De Mejia E, Prisecaru V (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45:425–445

    Article  CAS  PubMed  Google Scholar 

  • Defreitas Z, Ausich R, Newman J et al (2003) Composition and method for reducing post-prandial blood glucose. Canadian Patent CA 2483633, 13 Nov 2003

    Google Scholar 

  • DellaValle D, Thavarajah D, Thavarajah P et al (2013) Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: is there genetic potential for iron bioavailability? Field Crops Res 144:119–125

    Article  Google Scholar 

  • Diaz-Batalla L, Widholm J, Fahey G et al (2006) Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J Agr Food Chem 54:2045–2052

    Article  CAS  Google Scholar 

  • Doria E, Campion B, Sparvoli F et al (2012) Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compos Anal 26:72–80

    Article  CAS  Google Scholar 

  • Durante M, Bernardi R, Lupi M et al (1989) Phaseolus coccineus storage proteins. 2. Electrophoretic analysis and erythroagglutinating activity in various cultivars. Plant Breed 102:58–65

    Article  Google Scholar 

  • Duranti M (2006) Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82

    Article  CAS  PubMed  Google Scholar 

  • Finley JW, Burrell JB, Reeves PG (2007) Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J Nutr 137:2391–2398

    CAS  PubMed  Google Scholar 

  • Galisteo M, Duarte J, Zarzuelo A (2008) Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 19:71–84

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garbisa S, Sartor L, Biggin S et al (2001) Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91:822–832

    Article  CAS  PubMed  Google Scholar 

  • Geil PB, Anderson JW (1994) Nutrition and health implications of dry beans: a review. J Am Coll Nutr 13:549–558

    Article  CAS  PubMed  Google Scholar 

  • Gibson R, Perlas L, Hotz C (2006) Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 65:160–168

    Article  CAS  PubMed  Google Scholar 

  • Goyoaga C, Burbano C, Cuadrado C et al (2008) Content and distribution of vicine, convicine and L-DOPA during germination and seedling growth of two Vicia faba L. varieties. Eur Food Res Technol 227:1537–1542

    Article  CAS  Google Scholar 

  • Grant G, More L, Mckenzie N et al (1983) A survey of the nutritional and hemagglutination properties of legume seeds generally available in the UK. Br J Nutr 50:207–214

    Article  CAS  PubMed  Google Scholar 

  • Grant G, Edwards J, Pusztai A (1995) Alpha-amylase inhibitor levels in seeds generally available in Europe. J Sci Food Agr 67:235–238

    Article  CAS  Google Scholar 

  • Grant G, Duncan M, Alonso R et al (2003) Peas and lentils. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Elsevier, Amsterdam, pp 4433–4440

    Chapter  Google Scholar 

  • Guillamon E, Pedrosa M, Burbano C et al (2008) The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chem 107:68–74

    Article  CAS  Google Scholar 

  • Guillon F, Champ MM (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88(Suppl 3):S293–S306

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Maldonado S, Acosta-Gallegos J, Paredes-Lopez O (2000) Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.). J Sci Food Agr 80:1874–1881

    Article  CAS  Google Scholar 

  • Han KH, Fukushima M, Shimizu K et al (2003) Resistant starches of beans reduce the serum cholesterol concentration in rats. J Nutr Sci Vitaminol (Tokyo) 49:281–286

    Article  CAS  Google Scholar 

  • Hangen L, Bennink MR (2002) Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Article  CAS  PubMed  Google Scholar 

  • Hayat I, Ahmad A, Masud T eta l (2014) Nutritional and health perspectives of beans (Phaseolus vulgaris L.): an overview. Crit Rev Food Sci Nutr 54:580–592

    Article  CAS  PubMed  Google Scholar 

  • Hedley CL (2001) Carbohydrates in grain legume seeds: improving nutritional quality and agronomic characteristics. CABI, New York

    Google Scholar 

  • Hermsdorff HH, Zulet M, Abete I et al (2011) A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur J Nutr 50:61–69

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Infante M, Sousa V, Montalvo I et al (1998) Impact of microwave heating on hemagglutinins, trypsin inhibitors and protein quality of selected legume seeds. Plant Hum Nutr 52:199–208

    Article  CAS  Google Scholar 

  • Hernández-Salazar M, Osorio-Diaz P, Loarca-Piña G et al (2010) In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). J Sci Food Agr 90:1417–1422

    Article  CAS  Google Scholar 

  • Herzig KH, Bardocz S, Grant G et al (1997) Red kidney bean lectin is a potent cholecystokinin releasing stimulus in the rat inducing pancreatic growth. Gut 41:333–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillocks R, Maruthi M (2012) Grass pea (Lathyrus sativus): is there a case for further crop improvement? Euphytica 186:647–654

    Article  Google Scholar 

  • Holt S, Brand J, Soveny C et al (1992) Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 18:129–141

    Article  CAS  PubMed  Google Scholar 

  • Hoover R, Hughes T, Chung H et al (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    Article  CAS  Google Scholar 

  • Hu FB, Manson JE, Willett WC (2001) Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr 20:5–19

    Article  PubMed  Google Scholar 

  • Hutchins AM, Winham DM, Thompson SV (2012) Phaseolus beans: impact on glycaemic response and chronic disease risk in human subjects. Br J Nutr 108 (Suppl 1):S52–S65

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto M, Suzuki K, Iwanaga M et al (1995) Variation of seed alpha-amylase inhibitors in the common bean. Theor Appl Genet 90:425–429

    Article  CAS  PubMed  Google Scholar 

  • Israel D, Kwanyuen P, Burton J et al (2007) Response of low seed phytic acid soybeans to increases in external phosphorus supply. Crop Sci 47:2036–2046

    Article  CAS  Google Scholar 

  • Iwashita S, Mikus C, Baier S et al (2006) Glutamine supplementation increases postprandial energy expenditure and fat oxidation in humans. J Parenter Enteral Nutr 30:76–80

    Article  CAS  Google Scholar 

  • Jain N, Boivin M, Zinsmeister A et al (1989) Effect of ileal perfusion of carbohydrates and amylase inhibitor on gastrointestinal hormones and emptying. Gastroenterology 96:377–387

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Kendall CW, Augustin LS et al (2002) Glycemic index: overview of implications in health and disease. Am J Clin Nutr 76:266S–273S

    CAS  PubMed  Google Scholar 

  • Jordinson M, El-Hariry I, Calnan Det al (1999) Vicia faba agglutinin, the lectin present in broad beans, stimulates differentiation of undifferentiated colon cancer cells. Gut 44:709–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CLet al (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(Suppl 1):S11–S26

    Article  CAS  PubMed  Google Scholar 

  • Karakoy T, Erdem H, Baloch F et al (2012) Diversity of macro- and micronutrients in the seeds of lentil landraces. Sci World J Article ID 710412, 9 pages, doi:10.1100/2012/710412

    Google Scholar 

  • Karlström B, Vessby B, Asp NG et al (1987) Effects of leguminous seeds in a mixed diet in non-insulin-dependent diabetic patients. Diabetes Res 5:199–205

    PubMed  Google Scholar 

  • Kennedy A, Rostami A (2004) Use of bowman birk inhibitor for the treatment of multiple sclerosis and other autoimmune diseases. US Patent 20040142050, 22 Jul 2004

    Google Scholar 

  • Khalil A, El-Adawy T (1994) Isolation, identification and toxicity of saponin from different legumes. Food Chem 50:197–201

    Article  CAS  Google Scholar 

  • Khatib O, Aljurf M (2008) Cancer prevention and control in the Eastern Mediterranean region: the need for a public health approach. Hematol Oncol Stem Cell Ther 1:44–52

    Article  PubMed  Google Scholar 

  • Koh-Banerjee P, Rimm EB (2003) Whole grain consumption and weight gain: a review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc Nutr Soc 62:25–29

    Article  CAS  PubMed  Google Scholar 

  • Konietzny U, Greiner R (2003) Phytic acid: nutritional impact. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Elsevier, Amsterdam, pp 4555–4563

    Chapter  Google Scholar 

  • Kordas K, Szalmay G, Bardocz S et al (2001) Phytohaemagglutinin inhibits gastric acid but not pepsin secretion in conscious rats. J Physiol 95:309–314

    CAS  Google Scholar 

  • Kushi LH, Meyer KA, Jacobs DR (1999) Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. Am J Clin Nutr 70:451S–458S

    CAS  PubMed  Google Scholar 

  • Lajolo F, Genovese M, Pryme I et al (2004) Beneficial (antiproliferative) effects of different substances. In: Muzquiz M (ed) Recent advances of research in antinutritional factors in legume seeds and oilseeds. Wageningen Academic, Wageningen, pp 123–135

    Google Scholar 

  • Lawrence M, Izard T, Beuchat M et al (1994) Structure of phaseolin at 2-center-dot-2 Angstrom resolution—implications for a common vicilin/legumin structure and the genetic-engineering of seed storage proteins. J Mol Biol 238:748–776

    Article  CAS  PubMed  Google Scholar 

  • Layer P, Zinsmeister A, Dimagno E (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48

    CAS  PubMed  Google Scholar 

  • Liener I (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34:31–67

    Article  CAS  PubMed  Google Scholar 

  • Lovati MR, Manzoni C, Castiglioni S et al (2012) Lupin seed γ-conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr 107:67–73

    Article  PubMed  CAS  Google Scholar 

  • Mackay S, Ball MJ (1992) Do beans and oat bran add to the effectiveness of a low-fat diet? Eur J Clin Nutr 46:641–648

    CAS  PubMed  Google Scholar 

  • Magni C, Sessa F, Accardo E et al (2004) Conglutin gamma, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats. J Nutr Biochem 15:646–650

    Article  CAS  PubMed  Google Scholar 

  • Marinangeli CP, Jones PJ (2012) Pulse grain consumption and obesity: effects on energy expenditure, substrate oxidation, body composition, fat deposition and satiety. Br J Nutr 108(Suppl 1):S46–S51

    Article  CAS  PubMed  Google Scholar 

  • Marles M, Balasubramanian P, Bett K (2010) Differential accumulation of polyphenolics in black bean genotypes grown in four environments. J Agr Food Chem 58:7001–7006

    Article  CAS  Google Scholar 

  • Marlett JA, McBurney MI, Slavin JL et al (2002) Position of the American dietetic association: health implications of dietary fiber. J Am Diet Assoc 102:993–1000

    Article  PubMed  Google Scholar 

  • Maroof M, Glover N, Biyashev R (2009) Genetic basis of the low-phytate trait in the soybean line CX1834. Crop Sci 49:69–76

    Article  CAS  Google Scholar 

  • Marsolais F, Pajak A, Yin F et al (2010) Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 73:1587–1600

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y, Tonelli C et al (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  PubMed  Google Scholar 

  • Mathers JC (2002) Pulses and carcinogenesis: potential for the prevention of colon, breast and other cancers. Br J Nutr 88(Suppl 3):S273–S279

    Article  CAS  PubMed  Google Scholar 

  • McCrory MA, Hamaker BR, Lovejoy JC et al (2010) Pulse consumption, satiety, and weight management. Adv Nutr 1:17–30

    Article  PubMed Central  PubMed  Google Scholar 

  • McCue P, Shetty K (2004) Health benefits of soy isoflavonoids and strategies for enhancement: a review. Crit Rev Food Sci Nutr 44:361–367

    Article  CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • Mollard RC, Luhovyy BL, Panahi S et al (2012) Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br J Nutr 108 (Suppl 1):S111–S122

    Google Scholar 

  • Montoya C, Lalles J, Beebe S et al (2006) Influence of the Phaseolus vulgaris phaseolin level of incorporation, type and thermal treatment on gut characteristics in rats. Br J Nutr 95:116–123

    Article  CAS  PubMed  Google Scholar 

  • Montoya C, Leterme P, Victoria N et al (2008) Susceptibility of phaseolin to in vitro proteolysis is highly variable across common bean varieties (Phaseolus vulgaris). J Agr Food Chem 56:2183–2191

    Article  CAS  Google Scholar 

  • Montoya C, Lalles J, Beebe S et al (2010) Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Res Int 43:443–449

    Article  CAS  Google Scholar 

  • Murillo G, Choi JK, Pan O et al (2004) Efficacy of garbanzo and soybean flour in suppression of aberrant crypt foci in the colons of CF-1 mice. Anticancer Res 24:3049–3055

    PubMed  Google Scholar 

  • Murty CM, Pittaway JK, Ball MJ (2010) Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite 54:282–288

    Article  CAS  PubMed  Google Scholar 

  • Muzquiz M, Varela A, Burbano C et al (2012) Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem Rev 11:227–244

    Article  CAS  Google Scholar 

  • Nair R, Yang R, Easdown W et al (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agr 93:1805–1813

    Article  CAS  Google Scholar 

  • Nervi F, Covarrubias C, Bravo P et al (1989) Influence of legume intake on biliary lipids and cholesterol saturation in young Chilean men. Identification of a dietary risk factor for cholesterol gallstone formation in a highly prevalent area. Gastroenterology 96:825–830

    CAS  PubMed  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Noah L, Guillon F, Bouchet B et al (1998) Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J Nutr 128:977–985

    CAS  PubMed  Google Scholar 

  • Noakes M, Clifton P, McMurchie T (1999) The role of diet in cardiovascular health. A review of the evidence. Aust J Nutr Diet 56:S3–S22

    Google Scholar 

  • Obiro WC, Zhang T, Jiang B (2008) The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr 100:1–12

    Article  CAS  PubMed  Google Scholar 

  • Oliva ML, Ferreira R da S, Ferreira JG et al (2011) Structural and functional properties of kunitz proteinase inhibitors from Leguminosae: a mini review. Curr Protein Pept Sci 12:348–357

    Article  CAS  PubMed  Google Scholar 

  • Oomah B, Luc G, Leprelle C et al (2011) Phenolics, phytic acid, and phytase in canadian-grown low-tannin faba bean (Vicia faba L.) genotypes. J Agr Food Chem 59:3763–3771

    Article  CAS  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou Y, Fulgoni VL (2008) Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the national health and nutrition examination survey 1999–2002. J Am Coll Nutr 27:569–576

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Campion B et al (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Piergiovanni A, Pignone D (2003) Effect of year-to-year variation and genotype on trypsin inhibitor level in common bean (Phaseolus vulgaris L.) seeds. J Sci Food Agr 83:473–476

    Article  CAS  Google Scholar 

  • Porres J, Aranda P, Lopez-Jurado M et al (2007) Nitrogen fractions and mineral content in different lupin species (Lupinus albus, Lupinus angustifolius, and Lupinus luteus). Changes induced by the alpha-galactoside extraction process. J Agr Food Chem 55:7445–7452

    Article  CAS  Google Scholar 

  • Pras N, Woerdenbag H, Batterman S et al (1993) Mucuna pruriens – improvement of the biotechnological production of the anti-Parkinson drug L-DOPA by plant-cell selection. Pharmacy World Sci 15:263–268

    Article  CAS  Google Scholar 

  • Pryme IF, Bardocz S (2001) Anti-cancer therapy: diversion of polyamines in the gut. Eur J Gastroenterol Hepatol 13:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Pueyo J, Delgado Salinas A (1997) Presence of alpha-amylase inhibitor in some members of the subtribe phaseolinae (Phaseoleae: Fabaceae). Am J Bot 84:79–84

    CAS  Google Scholar 

  • Pusztai A, Bardocz S (1996) Biological effects of plant lectins on the gastrointestinal tract: metabolic consequences and applications. Trends Glycosci Glycotechnol 8:149–165

    Article  Google Scholar 

  • Pusztai A, Grant G, Duguid T et al (1995) Inhibition of starch digestion by alpha-amylase inhibitor reduces the efficiency of utilization of dietary proteins and lipids and retards the growth of rats. J Nutr 125:1554–1562

    CAS  PubMed  Google Scholar 

  • Pusztai A, Grant G, Buchan WC et al (1998) Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. Br J Nutr 79:213–221

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2003) Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Radberg K, Biernat M, Linderoth A et al (2001) Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs. J Anim Sci 79:2669–2678

    CAS  PubMed  Google Scholar 

  • Rasmussen S, Ingvardsen C, Torp A (2010) Mutations in genes controlling the biosynthesis and accumulation of inositol phosphates in seeds. Biochem Soc Trans 38:689–694

    Article  CAS  PubMed  Google Scholar 

  • Reddy N, Pierson M, Sathe S et al (1984) Chemical, nutritional and physiological-aspects of dry bean carbohydrates – a review. Food Chem 13:25–68

    Article  CAS  Google Scholar 

  • Robinson SM, Jaccard C, Persaud C et al (1990) Protein turnover and thermogenesis in response to high-protein and high-carbohydrate feeding in men. Am J Clin Nutr 52:72–80

    CAS  PubMed  Google Scholar 

  • Rochfort S, Panozzo J (2007) Phytochemicals for health, the role of pulses. J Agr Food Chem 55:7981–7994

    Article  CAS  Google Scholar 

  • Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int 43:432–442

    Article  CAS  Google Scholar 

  • Saini H, Knights E (1984) Chemical constitution of starch and oligosaccharide components of desi and kabuli chickpea (Cicer arietinum) seed types. J Agr Food Chem 32:940–944

    Article  CAS  Google Scholar 

  • Segev A, Badani H, Kapulnik Y et al (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75:S115–S119

    Google Scholar 

  • Serrano J, Puupponen-Pimia R, Dauer A et al (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329

    Article  Google Scholar 

  • Shi J, Arunasalam K, Yeung D et al (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Xue S, Ma Y et al (2009) Kinetic study of saponins B stability in navy beans under different processing conditions. J Food Eng 93:59–65

    Article  CAS  Google Scholar 

  • Sievenpiper JL, Kendall CWC, Esfahani A et al (2009) Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 52:1479–1495

    Article  CAS  PubMed  Google Scholar 

  • Sirtori CR, Lovati MR, Manzoni C et al (2004) Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 134:18–23

    CAS  PubMed  Google Scholar 

  • Sompong U, Kaewprasit C, Nakasathien S et al (2010) Inheritance of seed phytate in mungbean (Vigna radiata (L.) Wilczek). Euphytica 171:389–396

    Article  CAS  Google Scholar 

  • Sowmya P, Rajyalakshmi P (1999) Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum Nutr 53:359–365

    Article  CAS  PubMed  Google Scholar 

  • Sparvoli F, Daminati M, Cantoni R et al (1999) Possible role(s) of glycosylation in the biological properties of lectins and related proteins. In: Bardocz S, Hajos G, Pusztai A (eds) COST 98: effects of antinutrients on the nutritional value of legume diets, vol 6. EU, Luxemburg, pp 43–49

    Google Scholar 

  • Sreerama Y, Sashikala V, Pratape V, Singh V (2012) Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 131:462–468

    Google Scholar 

  • Sweeney H, Morris C, Kennedy A (2005) Bowman-birk inhibitor compositions for treatment of muscular atrophy and degenerative muscle disease. Patent Publication WO2005011596, 10 Feb 2005

    Google Scholar 

  • Tappy L, Wursch P, Randin J et al (1986) Metabolic effect of precooked instant preparations of bean and potato in normal and in diabetic subjects. Am J Cl Nutr 43:30–36

    CAS  Google Scholar 

  • Taunk J, Yadav N, Yadav R et al (2012) Genetic diversity among greengram (Vigna radiata (L.) Wilczek) genotypes varying in micronutrient (Fe and Zn) content using RAPD markers. Indian J Biotech 11:48–53

    CAS  Google Scholar 

  • Taylor M, Chapman R, Beyaert R et al (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agr Food Chem 56:5647–5654

    Article  CAS  Google Scholar 

  • Tharanathan R, Mahadevamma S (2003) Grain legumes – a boon to human nutrition. Trends Food Sci Thecnol 14:507–518

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49:99–104

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Sarker A et al (2009) Lentils (Lens culinaris Medikus subspecies culinaris): a whole food for increased iron and zinc intake. J Agr Food Chem 57:5413–5419

    Article  CAS  Google Scholar 

  • Thompson LU, Button CL, Jenkins DJ (1987) Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose response in humans. Am J Clin Nutr 46:467–473

    CAS  PubMed  Google Scholar 

  • Thompson S, Winham D, Hutchins A (2012) Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: a cross-over study. Nutr J 11:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Trinidad T, Mallillin A, Loyola A et al (2010) The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr 103:569–574

    Article  CAS  PubMed  Google Scholar 

  • Trugo L, Donangelo C, Duarte Y et al (1993) Phytic acid and selected mineral-composition of seed from wild-species and cultivated varieties of lupin. Food Chem 47:391–394

    Article  CAS  Google Scholar 

  • Urbano G, Lopez-Jurado M, Aranda P et al (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56:283–294

    Article  CAS  PubMed  Google Scholar 

  • USDA, Special Interest Databases on Flavonoids. Release 3.1. http://www.ars.usda.gov/Services/docs.htm?docid=24953.

  • Uzun A, Gucer S, Acikgoz E (2011) Common vetch (Vicia sativa L.) germplasm: correlations of crude protein and mineral content to seed traits. Plant Foods Hum Nutr 66:254–260

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos I, Oliveira J (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    Article  CAS  PubMed  Google Scholar 

  • Venn B, Mann J (2004) Cereal grains, legumes and diabetes. Eur J Cl Nutr 58:1443–1461

    Article  CAS  Google Scholar 

  • Venter CS, Vorster HH, Cummings JH (1990) Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 85:549–553

    CAS  PubMed  Google Scholar 

  • Villegas R, Gao YT, Yang G et al (2008) Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai women's health study. Am J Clin Nutr 87:162–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55:109–125

    Article  CAS  PubMed  Google Scholar 

  • Wang TL, Domoney C, Hedley CL et al (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ware J, Wan X, Newberne P et al (1999) Bowman-Birk inhibitor concentrate reduces colon inflammation in mice with dextran sulfate sodium-induced ulcerative colitis. Dig Dis Sci 44:986–990

    Article  CAS  PubMed  Google Scholar 

  • Warkentin T, Delgerjav O, Arganosa G et al (2012) Development and characterization of low-phytate pea. Crop Sci 52:74–78

    Article  Google Scholar 

  • Wilcox J, Premachandra G, Young K et al (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605

    Article  Google Scholar 

  • Winham DM, Hutchins AM, Johnston CS (2007) Pinto bean consumption reduces biomarkers for heart disease risk. J Am Coll Nutr 26:243–249

    Article  CAS  Google Scholar 

  • Wolever T, Jenkins D (2001) Effect of dietary fiber and foods on carbohydrate metabolism. In: Spiller G (ed) CRC Handbook of dietary fiber in human nutrition, 3rd edn. CRC, Boca Raton, pp 321–362

    Google Scholar 

  • Wong CL, Mollard RC, Zafar TA et al (2009) Food intake and satiety following a serving of pulses in young men: effect of processing, recipe, and pulse variety. J Amer Coll Nutr 28:543–552

    Article  Google Scholar 

  • Xu B, Chang S (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72:S159–S166

    Google Scholar 

  • Xu B, Chang SKC (2012) Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chem 134:1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yuan S, Chang S (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S177

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Thompson LU, Jenkins DJ (1983) The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am J Clin Nutr 38:835–842

    CAS  PubMed  Google Scholar 

  • Zaugg I, Magni C, Panzeri D et al (2013) QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet 126:647–661

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, **ong L, Yu B et al (2005) Apoptosis induced by a new member of saponin family is mediated through caspase-8-dependent cleavage of Bcl-2. Mol Pharmacol 68:1831–1838

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Programme FILAGRO “Strategie innovative e sostenibili per la filiera agroalimentare”, as part of the activities defined within the Accordo Quadro Consiglio Nazionale delle Ricerche and Regione Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Sparvoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sparvoli, F., Bollini, R., Cominelli, E. (2015). Nutritional Value. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_10

Download citation

Publish with us

Policies and ethics

Navigation