Measuring Autophagy in Stressed Cells

  • Protocol
Stress Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1292))

Abstract

Macro-autophagy is a major catabolic process in the cell used to degrade protein aggregates, dysfunctional organelles and intracellular pathogens that would otherwise become toxic. Autophagy also generates energy and metabolites for the cell through recycling of degraded autophagosomal cargo, which can be particularly important for cell viability under stress. The significance of changes in the rates of autophagic flux for cellular function and disease is being increasingly appreciated, and interest in measuring autophagy in different experimental systems is growing accordingly. Here, we describe key methodologies used in the field to measure autophagic flux, including monitoring LC3 processing by western blot, fluorescent cell staining, and flow cytometry, in addition to changes in the levels or posttranslational modifications of other autophagy markers, such as p62/Sqstm1 and the Atg5–Atg12 conjugate. We also describe what cellular stresses may be used to induce autophagy and how to control for changes in the rates of autophagic flux as opposed to inhibition of flux. Finally, we detail available techniques to monitor autophagy in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 80.24
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 98.79
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 103.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Deter RL, De Duve C (1967) Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33:437–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Eskelinen EL (2008) Fine structure of the autophagosome. Methods Mol Biol 445:11–28

    Article  PubMed  Google Scholar 

  4. Tanida I, Ueno T, Kominami E (2008) In: Deretic V (ed) Methods in molecular biology: autophagosome and phagosome. Humana Press, Totowa, NJ, pp 77–88

    Chapter  Google Scholar 

  5. Kadowaki M, Karim MR (2009) Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 452:199–213

    Article  CAS  PubMed  Google Scholar 

  6. Kimura S, Fujita N, Noda T et al (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Klionsky DJ, Agostinis P, Agrawal DK et al (2008) Guidelines for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Criollo A, Maiuri MC, Tasdemir E et al (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14:1029–1039

    CAS  PubMed  Google Scholar 

  16. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  PubMed  Google Scholar 

  17. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 anti-apoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  18. Maiuri MC, Le Toumelin G, Criollo A et al (2007) Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin1. EMBO J 26:2527–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Garfield AS (2010) Derivation of primary mouse embryonic fibroblast (PMEF) cultures. Methods Mol Biol 633:19–27

    Article  CAS  PubMed  Google Scholar 

  20. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  CAS  PubMed  Google Scholar 

  21. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  22. Bjorkoy G, Lamark T, Pankiv S et al (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    Article  PubMed  Google Scholar 

  23. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis and cancer. Cell 137:1001–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3:323–328

    Article  CAS  PubMed  Google Scholar 

  25. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460

    Article  CAS  PubMed  Google Scholar 

  26. Katayama H, Kogure T, Mizushima N et al (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052

    Article  CAS  PubMed  Google Scholar 

  27. Ladoire S, Chaba K, Martins I et al (2012) Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy 8:1–10

    Article  Google Scholar 

  28. Rosenfeldt MT, Nixon C, Liu E et al (2012) Analysis of macroautophagy by immunohistochemistry. Autophagy 8:963–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Strohecker AM, Guo JY, Karsli-Uzunbas G et al (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–1285

    Article  CAS  PubMed  Google Scholar 

  31. Lazova R, Camp RL, Klump V et al (2012) Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin Cancer Res 18:370–379

    Article  CAS  PubMed  Google Scholar 

  32. Rosenfeldt MT, O’Prey J, Morton JP et al (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504:296–300

    Article  CAS  PubMed  Google Scholar 

  33. Rao S, Tortola L, Perlot T et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5:3056–3070

    Article  PubMed  Google Scholar 

  34. Sandilands E, Serrels B, McEwan DG et al (2011) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 14:51–60

    Article  PubMed  Google Scholar 

  35. Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Maclean KH, Dorsey FC, Cleveland JL et al (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118:79–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tang YC, Williams BR, Siegel JJ et al (2011) Identification of aneuploidy-selective anti-proliferation compounds. Cell 144:499–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Houtkooper RH, Mouchiroud L, Ryu D et al (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457

    Article  CAS  PubMed  Google Scholar 

  40. Boland ML, Chourasia AH, Macleod KF (2013) Mitochondrial dysfunction in cancer. Front Oncol 3:292–320

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from NIH RO1 CA162405 (KFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay F. Macleod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sharifi, M.N., Mowers, E.E., Drake, L.E., Macleod, K.F. (2015). Measuring Autophagy in Stressed Cells. In: Oslowski, C. (eds) Stress Responses. Methods in Molecular Biology, vol 1292. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2522-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2522-3_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2521-6

  • Online ISBN: 978-1-4939-2522-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation