The Role of Hepatocyte Growth Factor Pathway Signaling in Renal Cell Carcinoma

  • Chapter
  • First Online:
Renal Cell Carcinoma

Abstract

The urgent need for effective therapies for patients with advanced renal cell carcinoma (RCC), fewer than 20 % of whom will survive more than 2 years, has led to the identification of critical genetic determinants and associated molecular pathways contributing to RCC oncogenesis, progression, and spread. Among the signaling pathways dysregulated in RCC is that of hepatocyte growth factor (HGF), which through the cell surface receptor tyrosine kinase, Met, stimulates proliferation, motility, and morphogenesis. Germ line missense mutations in the tyrosine kinase domain Met are associated with hereditary papillary renal carcinoma (HPRC), while somatic mutations and frequent trisomy of chromosome 7 implicate pathway involvement in sporadic papillary type 1 RCC. In addition, loss of the VHL tumor suppressor gene results in the derepression of an embryonic HGF-driven phenotype likely to contribute to tumor invasiveness and metastasis in clear cell RCC. Our knowledge of HGF/Met signaling has enabled rapid progress in characterizing its contributions to RCC and in laying the framework for the development of novel anticancer therapeutics. A better understanding of how HGF/Met signaling is integrated with other oncogenic pathways in RCC should aid the development of combinatorial treatment strategies, and help predict potential adverse effects of long-term pathway blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Clegg LX, Ward E, et al. Annual report to the nation on the status of cancer, 1975–2001, with a special feature regarding survival. Cancer. 2004;101(1):3–27.

    Article  PubMed  Google Scholar 

  2. Linehan WM, Vasselli J, Srinivasan R, et al. Genetic basis of cancer of the kidney: disease-specific approaches to therapy. Clin Cancer Res. 2004;10(18):6282S–9.

    Article  CAS  PubMed  Google Scholar 

  3. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  4. Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET? Trends Mol Med. 2005;11(6):284–92.

    Article  CAS  PubMed  Google Scholar 

  5. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8:404–10.

    Article  CAS  PubMed  Google Scholar 

  6. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem. 2003;88(2):408–17.

    Article  CAS  PubMed  Google Scholar 

  8. Rosario M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003;13(6):328–35.

    Article  CAS  PubMed  Google Scholar 

  9. Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6(8):637–45.

    Article  CAS  PubMed  Google Scholar 

  10. Uehara Y, Minowa O, Mori C, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5.

    Article  CAS  PubMed  Google Scholar 

  11. Karihaloo A, Nickel C, Cantley LG. Signals which build a tubule. Nephron Exp Nephrol. 2005;100:40–5.

    Article  Google Scholar 

  12. Perantoni AO. Renal development: perspectives on a Wnt-dependent process. Semin Cell Dev Biol. 2003;14(4):201–8.

    Article  CAS  PubMed  Google Scholar 

  13. Potempa S, Ridley AJ. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol Biol Cell. 1998;9(8):2185–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ridley AJ, Comoglio PM, Hall A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol. 1995;15(2):1110–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int. 2001;59(6):2023–38.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y. Hepatocyte growth factor and the kidney. Curr Opin Nephrol Hypertens. 2002;11:23–30.

    Article  PubMed  Google Scholar 

  17. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–7.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt L, Duh FM, Chen F, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343–50.

    Article  CAS  PubMed  Google Scholar 

  20. Olivero M, Valente G, Bardelli A, et al. Novel mutation in the ATP-binding site of the MET oncogene tyrosine kinase in a HPRCC family. Int J Cancer. 1999;82(5):640–3.

    Article  CAS  PubMed  Google Scholar 

  21. Dharmawardana PG, Giubellino A, Bottaro DP. Hereditary papillary renal carcinoma type I. Curr Mol Med. 2004;4(8):855–68.

    Article  CAS  PubMed  Google Scholar 

  22. Jeffers M, Schmidt L, Nakaigawa N, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A. 1997;94(21):11445–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A. 1998;95(24):14417–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bardelli A, Longati P, Gramaglia D, et al. Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc Natl Acad Sci U S A. 1998;95(24):14379–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Giordano S, Maffe A, Williams TA, et al. Different point mutations in the met oncogene elicit distinct biological properties. FASEB J. 2000;14(2):399–406.

    CAS  PubMed  Google Scholar 

  26. Michieli P, Basilico C, Pennacchietti S, et al. Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene. 1999;18(37):5221–31.

    Article  CAS  PubMed  Google Scholar 

  27. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Proteins. 2001;44(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Marimuthu A, Tsai J, et al. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proc Natl Acad Sci U S A. 2006;103(10):3563–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rickert KW, Patel SB, Allison TJ, et al. Structural basis for selective small molecule kinase inhibition of activated c-Met. J Biol Chem. 2011;286(13):11218–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chiara F, Michieli P, Pugliese L, Comoglio PM. Mutations in the met oncogene unveil a “dual switch” mechanism controlling tyrosine kinase activity. J Biol Chem. 2003;278(31):29352–8.

    Article  CAS  PubMed  Google Scholar 

  31. Schiering N, Knapp S, Marconi M, et al. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A. 2003;100(22):12654–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Timofeevski SL, McTigue MA, Ryan K, et al. Enzymatic characterization of c-Met receptor tyrosine kinase oncogenic mutants and kinetic studies with aminopyridine and triazolopyrazine inhibitors. Biochemistry. 2009;48(23):5339–49.

    Article  CAS  PubMed  Google Scholar 

  33. Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20.

    Article  CAS  PubMed  Google Scholar 

  34. Linehan WM, Walther MM, Zbar B. The genetic basis of the cancer of the kidney. J Urol. 2003;170:2163–72.

    Article  CAS  PubMed  Google Scholar 

  35. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet. 1994;7(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  36. Iliopoulos O, Kibel A, Gray S, Kaelin Jr WG. Tumour suppression by the human von Hippel-Lindau gene product. Nat Med. 1995;1(8):822–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kaelin Jr WG. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer. 2002;2(9):673–82.

    Article  CAS  PubMed  Google Scholar 

  38. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3(4):347–61.

    Article  PubMed  Google Scholar 

  39. Koochekpour S, Jeffers M, Wang PH, et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol. 1999;19(9):5902–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Peruzzi B, Athauda G, Bottaro DP. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci U S A. 2006;103(39):14531–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shibamoto S, Hayakawa M, Takeuchi K, et al. Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun. 1994;1(4):295–305.

    Article  CAS  PubMed  Google Scholar 

  42. Papkoff J, Aikawa M. WNT-1 and HGF regulate GSK3[beta] activity and [beta]-catenin signaling in mammary epithelial cells. Biochem Biophys Res Commun. 1998;247(3):851–8.

    Article  CAS  PubMed  Google Scholar 

  43. Monga SP, Mars WM, Pediaditakis P, et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res. 2002;62(7):2064–71.

    CAS  PubMed  Google Scholar 

  44. Herynk MH, Tsan R, Radinsky R, Gallick GE. Activation of c-Met in colorectal carcinoma cells leads to constitutive association of tyrosine-phosphorylated beta-catenin. Clin Exp Metastasis. 2003;20(4):291–300.

    Article  CAS  PubMed  Google Scholar 

  45. Huber SM, Braun GS, Segerer S, Veh RW, Horster MF. Metanephrogenic mesenchyme-to-epithelium transition induces profound expression changes of ion channels. Am J Physiol Renal Physiol. 2000;279(1):F65–76.

    CAS  PubMed  Google Scholar 

  46. Vainio SJ. Nephrogenesis regulated by Wnt signaling. J Nephrol. 2003;16(2):279–85.

    CAS  PubMed  Google Scholar 

  47. van Adelsberg J, Sehgal S, Kukes A, et al. Activation of hepatocyte growth factor (HGF) by endogenous HGF activator is required for metanephric kidney morphogenesis in vitro. J Biol Chem. 2001;276(18):15099–106.

    Article  PubMed  Google Scholar 

  48. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.

    CAS  PubMed  Google Scholar 

  49. Chitalia VC, Foy RL, Bachschmid MM, et al. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol. 2008;10(10):1208–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhou MI, Foy RL, Chitalia VC, et al. Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Proc Natl Acad Sci U S A. 2005;102(31):11035–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bilim V, Kawasaki T, Katagiri A, Wakatsuki SJ, Takahashi K, Tomita Y. Altered expression of beta-catenin in renal cell cancer and transitional cell cancer with the absence of beta-catenin gene mutations. Clin Cancer Res. 2000;6(2):460–6.

    CAS  PubMed  Google Scholar 

  52. Kim YS, Kang YK, Kim JB, Han SA, Kim KI, Paik SR. Beta-catenin expression and mutational analysis in renal cell carcinomas. Pathol Int. 2000;50(9):725–30.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu X, Kanai Y, Saito A, Kondo Y, Hirohashi S. Aberrant expression of beta-catenin and mutation of exon 3 of the beta-catenin gene in renal and urothelial carcinomas. Pathol Int. 2000;50(12):945–52.

    Article  CAS  PubMed  Google Scholar 

  54. Bohm M, Wieland I, Stinhofer C, Otto T, Rubben H. Detection of loss of heterozygosity in the APC tumor suppressor gene in nonpapillary renal cell carcinoma by microdissection and polymerase chain reaction. Urol Res. 1997;25(3):161–5.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki H, Ueda T, Komiya A, et al. Mutational state of von Hippel-Lindau and adenomatous polyposis coli genes in renal tumors. Oncology. 1997;54(3):252–7.

    Article  CAS  PubMed  Google Scholar 

  56. Kurose K, Sakaguchi M, Nasu Y, et al. Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J Urol. 2004;171(3):1314–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kojima T, Shimazui T, Hinotsu S, et al. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene. 2009;28:297–305.

    Article  CAS  PubMed  Google Scholar 

  58. Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene DKK2 is epigenetically silenced and inhibits renal cancer progression through apoptotic and cell cycle pathways. Clin Cancer Res. 2009;15:5678–87.

    Article  CAS  PubMed  Google Scholar 

  59. Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist gene polymorphisms and renal cancer. Cancer. 2009;115:4488–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kawakami K, Hirata H, Yamamura S, et al. Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res. 2009;69:8603–10.

    Article  CAS  PubMed  Google Scholar 

  61. Urakami S, Shiina H, Enokida H, et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res. 2006;12:383–91.

    Article  CAS  PubMed  Google Scholar 

  62. Surendran K, Simon TC, Liapis H, McGuire JK. Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int. 2004;65(6):2212–22.

    Article  CAS  PubMed  Google Scholar 

  63. Eble JN, Sauter G, Epstein JI, et al. Pathology and genetics of tumours of the genitourinary system and male genital organs, World health organization classification of tumours. Lyon, France: IARC Press; 2004.

    Google Scholar 

  64. Argani P, Hawkins A, Griffin CA, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal hmb45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158(6):2089–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tsuda M, Davis IJ, Argani P, et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res. 2007;67:919–29.

    Article  CAS  PubMed  Google Scholar 

  66. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12(12):3657–60.

    Article  CAS  PubMed  Google Scholar 

  67. Aebersold DM, Landt O, Berthou S, et al. Prevalence and clinical impact of Met Y1253D-activating point mutation in radiotherapy-treated squamous cell cancer of the oropharynx. Oncogene. 2003;22(52):8519–23.

    Article  CAS  PubMed  Google Scholar 

  68. Matsumoto K, Nakamura T. Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem Biophys Res Commun. 2005;333(2):316–27.

    Article  CAS  PubMed  Google Scholar 

  69. Mazzone M, Comoglio PM. The Met pathway: master switch and drug target in cancer progression. FASEB J. 2006;20(10):1611–21.

    Article  CAS  PubMed  Google Scholar 

  70. Michieli P, Mazzone M, Basilico C, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell. 2004;6(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  71. Kong-Beltran M, Seshagiri S, Zha J, et al. Somatic mutations lead to an oncogenic deletion of Met in lung cancer. Cancer Res. 2006;66(1):283–9.

    Article  CAS  PubMed  Google Scholar 

  72. Cao B, Su Y, Oskarsson M, et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci U S A. 2001;98(13):7443–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Martens T, Schmidt N-O, Eckerich C, et al. Inhibition of intracerebral glioblastoma growth by treatment with a novel one-armed anti-Met antibody. GMS/German Medical Science, an e-journal. 5-4-2005.

    Google Scholar 

  74. Kim KJ, Wang L, Su YC, et al. Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin Cancer Res. 2006;12(4):1292–8.

    Article  CAS  PubMed  Google Scholar 

  75. Schoffski P, Garcia JA, Stadler WM, et al. A phase II study of the efficacy and safety of AMG 102 in patients with metastatic renal cell carcinoma. BJU Int. 2011;108(5):679–86.

    CAS  PubMed  Google Scholar 

  76. Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene. 2002;21(32):4885–93.

    Article  CAS  PubMed  Google Scholar 

  77. Berthou S, Aebersold DM, Schmidt LS, et al. The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene. 2004;23(31):5387–93.

    Article  CAS  PubMed  Google Scholar 

  78. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  79. Smolen GA, Sordella R, Muir B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A. 2006;103(7):2316–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Choueiri TK, Vaishampayan U, Rosenberg JE, et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol. 2013;31(2):181–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Srinivasan R, Bottaro DP, Choueiri TK, et al. Correlation of germline MET mutation with response to the dual Met/VEGFR-2 inhibitor foretinib in patients with sporadic and hereditary papillary renal cell carcinoma: results from a multicenter phase II study (MET111644). J Clin Oncol. 2012;30 Suppl 5:abstr 372.

    Google Scholar 

  82. Munshi N, Jeay S, Li Y, Chen CR, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9(6):1544–53.

    Article  CAS  PubMed  Google Scholar 

  83. Wagner AJ, Goldberg JM, Dubois SG, Choy E, Rosen L, Pappo A, Geller J, Judson I, Hogg D, Senzer N, Davis IJ, Chai F, Waghorne C, Schwartz B, Demetri GD. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer. 2012;118(23):5894–902.

    Article  CAS  PubMed  Google Scholar 

  84. Choueiri TK, Pal SK, McDermott DF, et al. Activity of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). J Clin Oncol. 2012;30 Suppl 5:abstr 364.

    Google Scholar 

  85. Choueiri TK, Pal SK, McDermott DF, et al. Efficacy of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC). 2012 ASCO Annual Meeting. Abstract No: 4504.

    Google Scholar 

  86. Rahuel J, Gay B, Erdmann D, et al. Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Nat Struct Biol. 1996;3(7):586–9.

    Article  CAS  PubMed  Google Scholar 

  87. Dharmawardana PG, Peruzzi B, Giubellino A, Burke Jr TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs. 2006;17(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  88. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002;8(4 Suppl):S55–61.

    Article  CAS  PubMed  Google Scholar 

  89. Webb CP, Hose CD, Koochekpour S, et al. The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res. 2000;60(2):342–9.

    CAS  PubMed  Google Scholar 

  90. **e Q, Gao CF, Shinomiya N, et al. Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene. 2005;24(23):3697–707.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Bottaro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cecchi, F., Lee, Y.H., Peruzzi, B., Lattouf, JB., Bottaro, D.P. (2015). The Role of Hepatocyte Growth Factor Pathway Signaling in Renal Cell Carcinoma. In: Bukowski, R., Figlin, R., Motzer, R. (eds) Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1622-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1622-1_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1621-4

  • Online ISBN: 978-1-4939-1622-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation