Germplasm Improvement to Develop Commercially Viable Lines of the New Oilseed Crop Lesquerella

  • Chapter
  • First Online:
Industrial Crops

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 9))

Abstract

Lesquerella (Physaria fendleri) is a new oilseed crop that is being domesticated as an alternative crop for arid regions in the United States. As a member of the Brassica family, the species exhibits a high seed-oil content that can provide a source of hydroxy fatty acids for industrial use as source of bioenergy and by-products that can be utilized in livestock production. Germplasm evaluation and breeding activities on the crop have been done by the University of Arizona and the US Department of Agriculture (USDA). Lesquerella and other Physaria and Paysonia species have a substantial germplasm collection that is well characterized for phenotypic traits and oil profiles. There are several improved germplasm released by the USDA with higher oil content and seed yield, enhanced oil profile, abiotic stress tolerance, and harvest index which can be directly utilized for commercial production or used for crop improvement. Additional technologies that can aid breeding, such as molecular marker systems and genetic transformation systems, have been established. A few challenges remain to be surmounted for the crop to be commercialized. A continued concerted effort by public and private institutions may hasten the process of bringing this new crop to commercial production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dicks MR, Buckley KC, editors. Alternative opportunities in agriculture: expanding output through diversification. Washington, DC: Commodity Economics Division, Economic Research Service, U.S. Department of Agriculture; 1990. Agricultural Economic Report No. 633.

    Google Scholar 

  2. Isbell TA. US effort in the development of new crops (Lesquerella, Pennycress, Coriander and Cuphea). Oléagineux, Corps Gras, Lipides. 2009;16:205–10.

    Article  Google Scholar 

  3. Hymowitz T, Harlan J. Introduction of soybean to North America by Samuel Bowen in 1765. Econ Bot. 1983;37:371.

    Article  Google Scholar 

  4. Shands HL, White GA. New crops in the U.S. national plant germplasm system. In: Janick J, Simon JE, editors. Advances in new crops. Portland: Timber Press; 1990. p. 70–5.

    Google Scholar 

  5. Paarlberg D. The economics of new crops. In: Advances in New Crops: Proceedings of the First National Symposium on New Crops -Research, Development, Economics; 1988 Oct 23–26. Indianapolis; 1990. p. 2–6.

    Google Scholar 

  6. Thompson AE. Arid-land industrial crops. In: Janick J, Simon JE, editors. Advances in new crops. Portland: Timber Press; 1990. p. 232–41.

    Google Scholar 

  7. Dierig DA, Wang G, McCloskey WB, Thorp KR, Isbell TA, Ray DT, Foster MA. Lesquerella: new crop development and commercialization in the U.S. Ind Crops Prod. 2011;34:381–1385.

    Article  Google Scholar 

  8. Barclay AS, Gentry HS, Jones Q. The search for new industrial crops II: Lesquerella (Cruciferae) as a source of new oilseeds. Econ Bot. 1962;16:95–100.

    Article  CAS  Google Scholar 

  9. Dierig DA, Thompson AE, Nakayama FS. Lesquerella commercialization efforts in the United States. Ind Crops Prod. 1993;1:289–93.

    Article  Google Scholar 

  10. Jones Q, Wolff IA. The search for new industrial crops. Econ Bot. 1960;41:56–68.

    Article  Google Scholar 

  11. Smith Jr CR, Wilson TL, Miwa T, Zobel H, Lohmar RL, Wolff IA. Lesquerolic acid, a new hydroxy acid from lesquerella seed oil. J Org Chem. 1961;26:2903–5.

    Article  CAS  Google Scholar 

  12. Mikolajczak KL, Earle FR, Wolff IA. Search for new industrial oils. IV. Seed oils of the genus Lesquerella. J Am Oil Chem Soc. 1962;39:78–80.

    Article  Google Scholar 

  13. Gentry HS, Barclay AS. The search for new industrial crops III: prospectus of Lesquerella fendleri. Econ Bot. 1962;3:206–11.

    Article  Google Scholar 

  14. Wang GS, McCloskey W, Foster M, Dierig D. Lesquerella: a winter oilseed crop for the Southwest. Tucson: Arizona Cooperative Extension. The University of Arizona; 2010.

    Google Scholar 

  15. Dierig DA, Thompson AE, Rebman JP, Kleiman R, Phillips BS. Collection and evaluation of new Lesquerella and Physaria germplasm. Ind Crops Prod. 1996;5:53–63.

    Article  CAS  Google Scholar 

  16. Buchanan RA, Duke JA. Botanochemical crops. In: McClure TA, Lipinsky ES, editors. CRC handbook of biosolar resources, Resource materials, vol. II. Boca Raton: CRC Press; 1981. p. 157–79.

    Google Scholar 

  17. Princen LH, Rothfus JA. Development of new crops for industrial raw materials. J Am Oil Chem Soc. 1984;61:281–9.

    Article  CAS  Google Scholar 

  18. Smith M, Moon H, Kunst L. Arabidopsis as a model system to study hydroxy fatty acid production. In: Sánchez J, Cerdá-Olmedo E, Martínez-Force E, editors. Advances in plant lipid research. Sevilla: Universidad de Sevilla; 1998. p. 650–2.

    Google Scholar 

  19. Engeseth N, Stymne S. Desaturation of oxygenated fatty acids in Lesquerella and other oil seeds. Planta. 1996;198:238–45.

    Article  CAS  Google Scholar 

  20. Chaudhry A, Kleiman R, Carlson KD. Minor components of Lesquerella fendleri seed oil. J Am Oil Chem Soc. 1990;67:863–6.

    Article  CAS  Google Scholar 

  21. Isbell TA, Lowery BA, DeKeyser SS, Winchell ML, Cermak SC. Physical properties of triglyceride estolides from lesquerella and castor oils. Ind Crops Prod. 2006;23:256–63.

    Article  CAS  Google Scholar 

  22. Cermak SC, Evangelista R. Lubricants and functional fluids from Lesquerella oil. In: Bireshaw G, Mittal KL, editors. Surfactants in tribology, vol. 3. Boca Raton: CRC Press; 2013. p. 195–226.

    Chapter  Google Scholar 

  23. Cermak SC, Brandon KB, Isbell TA. Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind Crops Prod. 2006;23:54–64.

    Article  CAS  Google Scholar 

  24. Moser BR, Cermak SC, Isbell TA. Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultralow diesel fuels. Energy Fuel. 2008;22:1349–52.

    Article  CAS  Google Scholar 

  25. Kish S. Lesquerella: the next source of biofuel [Internet]. 2008. http://www.csrees.usda.gov/newsroom/impact/2008/nri/07311_lesquerella.html. Accessed 20 Aug 2013.

  26. Knothe G, Cermak SC, Evangelista RL. Methyl esters from vegetable oils with hydroxy fatty acids: comparison of lesquerella and castor methyl esters. Fuel. 2012;96:535–40.

    Article  CAS  Google Scholar 

  27. Dierig DA, Tomasi PM, Salywon AM, Ray DT. Improvement of hydroxy fatty acid seed oil content and other traits from interspecific hybrids of three Lesquerella species: Lesquerella fendleri, L. pallida, and L. lindheimeri. Euphytica. 2004;139:199–206.

    Article  CAS  Google Scholar 

  28. Holser RA, Carriere CJ, Park JS, Abbott TP. Rheological characterization of jet-cooked Lesquerella fendleri seed gum and cornstarch solutions. Ind Crops Prod. 2000;11:243–7.

    Article  CAS  Google Scholar 

  29. Vaughn SF, Deppe NA, Berhow MA, Evangelista RA. Lesquerella press cake as an organic fertilizer for greenhouse tomatoes. Ind Crops Prod. 2010;32:164–8.

    Article  Google Scholar 

  30. Supavarn P, Knapp FW, Sigafus R. Investigations of mucilaginous seeds as potential biological control agents against mosquito larvae. Mosq News. 1976;36:177–82.

    Google Scholar 

  31. Du X, Ge X, Zhao Z, Li Z. Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep. 2008;27:261–71.

    Article  CAS  PubMed  Google Scholar 

  32. Carlson KD, Chaudhry A, Bagby MO. Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem Soc. 1990;67:438–42.

    Article  CAS  Google Scholar 

  33. Miller RW, Van Etten CH, Wolff IA. Amino acid composition of Lesquerella seed meal. J Am Oil Chem Soc. 1962;39:115–7.

    Article  CAS  Google Scholar 

  34. Hojilla-Evangelista MP, Evangelista RL. Functional properties of protein from Lesquerella fendleri seed and press cake from oil processing. Ind Crops Prod. 2009;29:466–72.

    Article  CAS  Google Scholar 

  35. Rollins RC, Shaw EA. The genus Lesquerella (Cruciferae) in North America. Cambridge, MA: Harvard University Press; 1973.

    Book  Google Scholar 

  36. Watson S. Contributions to American botany, XV. In: Proceedings of the American Academy of Arts and Sciences [Internet]. 1888;23:249–287 http://www.archive.org/download/proceedingsofame23amer/proceedingsofame23amer.pdf. Accessed 1 Dec 2013.

  37. Rollins RC. The Cruciferae of continental North America, systematics of the mustard family from the Arctic to Panama. Stanford: Stanford University Press; 1993.

    Google Scholar 

  38. Al-Shehbaz IA, O’Kane Jr SL. Lesquerella is united with Physaria (Brassicaceae). Novon. 2002;12:319–29.

    Article  Google Scholar 

  39. Payson EB. A monograph of the genus Lesquerella. Ann Mo Bot Gard. 1922;8:103–236.

    Article  Google Scholar 

  40. Rollins RC. Two Lesquerellas (Cruciferae) of south central and western Montana. Novon. 1995;5:71–5.

    Article  Google Scholar 

  41. Rollins RC, Beck KA, Caplow FE. An undescribed species of Lesquerella (Cruciferae) from the state of Washington. Rhodora. 1995;97:201–7.

    Google Scholar 

  42. Anderson JL, Reveal JL, Rollins RC. Lesquerella vicina (Brassicaceae), a new species from the Uncompahgre River valley in western Colorado. Novon. 1997;7:9–12.

    Article  Google Scholar 

  43. O’Kane Jr SL. Lesquerella navajoensis (Brassicaceae), a new species of the L. hitchcockii complex from New Mexico. Madroño. 1999;46:88–91.

    Google Scholar 

  44. O’Kane Jr SL. Physaria scrotiformis (Brassicaceae), a new high-elevation species from southwestern Colorado and new combinations in Physaria. Novon. 2007;17:376–82.

    Article  Google Scholar 

  45. Grady BR, O’Kane Jr SL. New species and combinations in Physaria (Brassicaceae) from Western North America. Novon. 2007;17:182–92.

    Article  Google Scholar 

  46. Federal Register. Federal register – the daily journal of the United States government [Internet]. 2013. https://www.federalregister.gov/articles/search?conditions%5Bterm%5D=physaria&page=2&quiet=true. Accessed 12 Oct 2013.

  47. O’Kane Jr SL, Al-Shehbaz IA, Turland NJ. Proposal to conserve the name Lesquerella against Physaria (Cruciferae). Taxon. 1999;48:163–4.

    Article  Google Scholar 

  48. Brummitt RK. Report of the Committee on Spermatophyta: 50. Taxon. 2000;49:804.

    Google Scholar 

  49. O’Kane Jr SL, Al-Shehbaz IA. Paysonia, a new genus segregated from Lesquerella (Brassicaceae). Novon. 2002;12:379–81.

    Article  Google Scholar 

  50. O’Kane Jr SL, Al-Shehbaz IA. Phylogenetic positions and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Mo Bot Gard. 2003;90:603–12.

    Article  Google Scholar 

  51. Cruz VMV, Kilian A, Dierig DA. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS One. 2013;8:e64062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Cruz VMV, Kilian A, McKay J, Dierig DA. Molecular genetic characterization of Lesquerella new industrial crop using DArTseq markers. In: Proceedings of the Plant and Animal Genome XXI; Jan 12–16. San Diego; 2013.

    Google Scholar 

  53. Salywon AM, Dierig DA, Rebman JP, Jasso de Rodriguez D. Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm. Am J Bot. 2005;92:53–62.

    Article  PubMed  Google Scholar 

  54. Roseberg RJ. Cultural practices for Lesquerella production. J Am Oil Chem Soc. 1993;70:1241–4.

    Article  Google Scholar 

  55. Rodríguez Garcia R, Jasso de Rodríguez D, Angulo-Sánchez JL, Dierig DA, Diaz Solís H, De la Rosa-Loera A. Lesquerella fendleri response to different sowing dates in northern Mexico. Ind Crops Prod. 2007;25:117–22.

    Article  Google Scholar 

  56. Ayerza R, Coates W. New industrial crops: Northwestern Argentina Regional Project. In: Janick J, editor. Progress in new crops: Proceedings of the Third National Symposium; 1996 Oct 22–25. Indianapolis; 1996. p. 45–51.

    Google Scholar 

  57. Windauer LB, Slafer GA, Ravetta DA. Phenological responses to temperature of annual and a perennial Lesquerella species. Ann Bot. 2004;94:139–44.

    Article  PubMed Central  PubMed  Google Scholar 

  58. OMAF and MRA. Lesquerella. Ontario ministry of agriculture and food, ministry of rural affairs specialty cropportunities [Internet]. 2013. http://www.omafra.gov.on.ca/CropOp/en/indus_misc/oil_crops/lesq.html. Accessed 2 Dec 2013.

  59. EuroBioRef. EUROpean multilevel integrated BIOREFinery design for sustainable biomass processing. EuroBioRef – 241718 – 42M Publishable Summary [Internet]. 2013. http://www.eurobioref.org/images/deliverables/M42_Publishable_Summary_LONG_VF.pdf. Accessed 1 Dec 2013.

  60. Hinman CW. New crops for arid lands. Science. 1984;225:1445–8.

    Article  CAS  PubMed  Google Scholar 

  61. Puppala N, Fowler JL. Growth analysis of Lesquerella in response to moisture stress. In: Janick J, editor. Perspectives on new crops and new uses. Alexandria: ASHS Press; 1999. p. 244–6.

    Google Scholar 

  62. Thompson AE, Dierig DA, White GA. The use of plant introductions to develop new industrial crop cultivars. In: Shands HL, Weisner LE, editors. Use of plant introductions in cultivar development, part 2, CSSA special publication, vol. 20. Madison: Crop Science Society of America; 1992. p. 9–48.

    Google Scholar 

  63. Jenderek MM, Dierig DA, Isbell TA. Fatty-acid profile of Lesquerella germplasm in the National Plant Germplasm System collection. Ind Crops Prod. 2009;29:154–64.

    Article  CAS  Google Scholar 

  64. Brahim K, Stumpf DK, Ray DT, Dierig DA. Lesquerella fendleri seed oil content and composition: harvest date and plant population effects. Ind Crops Prod. 1996;5:245–52.

    Article  CAS  Google Scholar 

  65. Jenderek MM. Ornamental characteristics of lesquerella (Lesquerella sp.) plants. HortScience. 2006;41:1028.

    Google Scholar 

  66. Cruz VM, Comas LH, Dierig DA. Survey of root variation in lesquerella (Physaria fendleri) and analysis of response to temperature treatments. In: Proceedings ASA, CSSA, and SSSA International Annual Meetings; Oct 21–24. Cincinnati; 2012.

    Google Scholar 

  67. U.S. Fish and Wildlife Service. White bladderpod (Lesquerella pallida) recovery plan. Albuquerque: USDI Fish and Wildlife Service; 1992.

    Google Scholar 

  68. Thompson AE. New native crops for the arid Southwest. Econ Bot. 1985;39:436–53.

    Article  Google Scholar 

  69. Thompson AE, Dierig DA. Initial selection and breeding of Lesquerella fendleri, a new industrial oilseed. Ind Crops Prod. 1994;2:97–106.

    Article  Google Scholar 

  70. Dierig DA, Thompson AE, Coffelt TA. Registration of three Lesquerella fendleri germplasm lines selected for improved oil traits. Crop Sci. 1998;38:287.

    Article  Google Scholar 

  71. Dierig DA, Tomasi PM, Coffelt TA, Rayford WE, Lauver L. Yellow seed coat Lesquerella. Crop Sci. 2000;40:865–6.

    Google Scholar 

  72. Dierig DA, Tomasi PM, Dahlquist GA. Registration of WCL-LY2 high oil Lesquerella fendleri germplasm. Crop Sci. 2001;41:604.

    Article  Google Scholar 

  73. Dierig DA, Shannon MC, Grieve CM. Registration of WCL-SL1 salt tolerant Lesquerella fendleri germplasm. Crop Sci. 2001;41:604–5.

    Article  Google Scholar 

  74. Dierig DA, Salywon AM, Jasso de Rodriguez D. Registration of a mutant lesquerella genetic stock with cream flower color. Crop Sci. 2006;46:1836–7.

    Article  Google Scholar 

  75. Dierig DA, Dahlquist GA, Tomasi PM. Registration of WCL-LO3 high oil Lesquerella fendleri germplasm. Crop Sci. 2006;46:1832–3.

    Article  Google Scholar 

  76. Dierig DA, Salywon AM, Tomasi PM, Dahlquist GH, Isbell T. Variation of seed oil composition in parent and S1 generations of Lesquerella fendleri (Brassicaceae). Ind Crops Prod. 2006;24:274–9.

    Article  CAS  Google Scholar 

  77. Naranjo SE, Ellsworth PC, Dierig DA. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop. J Econ Entomol. 2011;104:1575–83.

    Article  PubMed  Google Scholar 

  78. Naranjo SE, Stefanek MA. Feeding behavior of a potential insect pest, Lygus hesperus, on four new industrial crops for the arid southwestern USA. Ind Crops Prod. 2012;37:358–61.

    Article  Google Scholar 

  79. Dierig D, Ray DT. New crops breeding: Lesquerella. In: Vollman J, Rajcan I, editors. Oil crops, Handbook of plant breeding, vol. 4. New York: Springer; 2009. p. 507–16.

    Chapter  Google Scholar 

  80. Cruz VMV, Walters C, Dierig DA. Dormancy and after-ripening response of seeds from natural populations and conserved Physaria (syn. Lesquerella) germplasm and their association with environmental and plant parameters. Ind Crops Prod. 2013;45:191–9.

    Article  CAS  Google Scholar 

  81. Dierig DA, Grieve CM, Shannon MC. Selection for salt tolerance in Lesquerella fendleri (Gray) S. Wats. Ind Crops Prod. 2003;17:15–22.

    Article  Google Scholar 

  82. Roberts L. Extinction imminent for native plants. Science. 1988;242:1508.

    Article  CAS  PubMed  Google Scholar 

  83. Sampson DR. The genetics of self-incompatibility in Lesquerella densipila and the F1 hybrid L. densipila x L. lescurii. Can J Bot. 1958;36:39–56.

    Article  Google Scholar 

  84. Rollins RC, Solbrig OT. Interspecific hybridization in Lesquerella. Contributions from the Gray Herbarium of Harvard University, no. 203. 1973. p. 48. http://archive.org/stream/mobot31753002286786/mobot31753002286786_djvu.txt. Accessed 11 Nov 2013.

  85. Relms LN. Potential for hybridization between Lesquerella gordonii and Lesquerella recurvata (Brassicaceae): an electrophoretic study [M.S. thesis]. San Angelo: Angelo State University; 1994.

    Google Scholar 

  86. Dierig DA, Dahlquist GH, Coffelt TA, Ray DT, Isbell TA, Wang G. Registration of WCL-LO4-Gail lesquerella with improved harvest index. J Plant Regist. 2013;7:339–41.

    Article  Google Scholar 

  87. Isbell TA, Mund MS, Evangelista RL, Dierig DA. Method for analysis of fatty acid distribution and oil content on a single Lesquerella fendleri seed. Ind Crops Prod. 2008;28:231–6.

    Article  CAS  Google Scholar 

  88. Tomasi P, Ferrie AMR. Microspore culture in genus Lesquerella. In: Proceedings of 2003 Annual Meeting of the Association for the Advancement of Industrial Crops; 2003 Oct 12–15. Portland; 2003.

    Google Scholar 

  89. Cabin RJ, Evans AS, Mitchell RJ. Genetic effects of germination timing and environment: an experimental investigation. Evolution. 1997;51:1427–34.

    Article  Google Scholar 

  90. Kaufman B, Richards S, Dierig DA. DNA isolation method for high polysaccharide Lesquerella species. Ind Crops Prod. 1999;9:111–4.

    Article  CAS  Google Scholar 

  91. Salywon A, Dierig DA. Isolation and characterization of microsatellite loci in Lesquerella fendleri (Brassicaceae) and cross-species amplification. Mol Ecol Notes. 2006;6:382–4.

    Article  CAS  Google Scholar 

  92. Neale J. Southeastern Colorado G2 and G3 species. In: Minutes of the Colorado Rare Plant Symposium [Internet]. 2012. http://www.cnhp.colostate.edu/download/documents/2012/RarePlantSymposiumNotes2012.pdf. Accessed 14 Mar 2013.

  93. Kothera L, Ward SM, Carney SE. Assessing the threat from hybridization to the rare endemic Physaria bellii Mulligan (Brassicaceae). Biol Conserv. 2007;140:110–8.

    Article  Google Scholar 

  94. Kothera L, Richards CM, Carney SE. Genetic diversity and structure in the rare Colorado endemic plant Physaria bellii Mulligan (Brassicaceae). Conserv Genet. 2007;8:1043–50.

    Article  Google Scholar 

  95. Tiwari S, Kumar S. Neglected oil crop biotechnology. In: Jain SM, Dutta Gupta S, editors. Biotechnology of neglected and underutilized crops. Dordrecht: Springer; 2013. p. 117–79.

    Chapter  Google Scholar 

  96. Tomasi P, Dierig D, Dahlquist G. An ovule culture technique for producing interspecific Lesquerella hybrids. In: Janick J, Whipkey A, editors. Trends in new crops and new uses. Alexandria: ASHS Press; 2002. p. 208–12.

    Google Scholar 

  97. Skarzhinskaya M, Landgren M, Glimelius K. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet. 1996;93:1242–50.

    Article  CAS  PubMed  Google Scholar 

  98. Skar**skaia M, Svab Z, Maliga P. Plastid transformation in Lesquerella fendleri, an oilseed Brassicaceae. Transgenic Res. 2003;12:115–22.

    Article  CAS  PubMed  Google Scholar 

  99. Wang W, Wang C, Huang BL, Huang B. Agrobacterium tumefaciens-mediated transformation of Lesquerella fendleri L., a potential new oil crop with rich lesquerolic acid. Plant Cell Tissue Organ Cult. 2008;92:165–71.

    Article  CAS  Google Scholar 

  100. Chen GQ, Lin J. Use of quantitative polymerase chain reaction for determining copy numbers of transgenes in Lesquerella fendleri. Am J Agric Biol Sci. 2010;5:415–21.

    Article  CAS  Google Scholar 

  101. Chen GQ. Effective reduction of chimeric tissue in transgenics for the stable genetic transformation of Lesquerella fendleri. HortScience. 2011;46:86–90.

    CAS  Google Scholar 

  102. Chen GQ, Thilmony RL, Lin JT. Transformation of Lesquerella fendleri with the new binary vector pGPro4-35S. Online J Biol Sci. 2012;11:90–5.

    Google Scholar 

  103. Chen GQ. Metabolic engineering oil biosynthesis pathways in Lesquerella fendleri [Internet]. 2012. http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=286174. Accessed 2 Dec 2013.

  104. Mitchell R. Effects of pollination intensity on Lesquerella fendleri seed set: variation among plants. Oecologia. 1997;109:382–8.

    Article  Google Scholar 

  105. Bass LN, Clark DC. Persistence of the dormancy-breaking effect of gibberellic acid on Lesquerella seeds. Proc Assoc Off Seed Anal. 1973;63:102–5.

    Google Scholar 

  106. Bass LN, Clark DC, Sayers RL. Germination experiments with seed of Lesquerella spp. Proc Assoc Off Seed Anal. 1966;56:148–53.

    Google Scholar 

  107. Evans AS, Mitchell RJ, Cabin RJ. Morphological side effects of using gibberellic acid to induce germination: consequences for the study of seed for dormancy. Am J Bot. 1996;83:543–649.

    Article  CAS  Google Scholar 

  108. Cruz VMV, Romano G, Dierig DA. Effects of after-ripening and storage regimens on seed-germination behavior of seven species of Physaria. Ind Crops Prod. 2012;35:185–91.

    Article  Google Scholar 

  109. Sharir A, Gelmond H. Germination studies of Lesquerella fendleri and L. gordonii with reference to their cultivation. Econ Bot. 1971;25:55–9.

    Article  Google Scholar 

  110. Puppala N, Fowler JL. Lesquerella seed pretreatment to improve germination. Ind Crops Prod. 2002;17:61–9.

    Article  Google Scholar 

  111. Dierig DA, Adam NR, Mackey BE, Dahlquist GH, Coffelt TA. Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Ind Crops Prod. 2006;24:17–25.

    Article  Google Scholar 

  112. Coates W. Mechanical harvesting of lesquerella. Ind Crops Prod. 1994;2:245–50.

    Article  Google Scholar 

  113. Coates W. Effect of harvest method and date on lesquerella seed yields. Ind Crops Prod. 1996;5:125–32.

    Article  Google Scholar 

  114. Jolliff GD. New-crop development as part of sustainable agriculture. In: Proceedings of the Enviro/Economic Sustainability Workshop – A Policy Discussion Including Agricultural, Environmental & Industry Interests; Dec 8–9. Chicago; 1993. p. 93–131.

    Google Scholar 

  115. Van Dyne DL. Comparative economics of producing Lesquerella in various areas of the Southwestern United States. Industrial Uses of Agricultural Materials Situation and Outlook. Commercial Agriculture Division, Economic Research Service, U.S. Department of Agriculture, IUS-7. 1997. p. 32–35.

    Google Scholar 

  116. Evangelista R. Oil extraction from lesquerella seeds by dry extrusion and expelling. Ind Crops Prod. 2009;29:189–96.

    Article  CAS  Google Scholar 

  117. Gushina IA, Harwood JL. Complex lipid biosynthesis and its manipulation in plants. In: Ranalli P, editor. Improvement of crops plants for industrial end uses. Dordrecht: Springer; 2007. p. 253–79.

    Chapter  Google Scholar 

  118. Moon H, Chowrira G, Rowland O, Blacklock BJ, Smith MA, Kunst L. A root-specific condensing enzyme from Lesquerella fendleri that elongates very-long-chain saturated fatty acids. Plant Mol Biol. 2004;56:917–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Dierig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cruz, V.M.V., Dierig, D.A. (2015). Germplasm Improvement to Develop Commercially Viable Lines of the New Oilseed Crop Lesquerella. In: Cruz, V.M.V., Dierig, D.A. (eds) Industrial Crops. Handbook of Plant Breeding, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1447-0_14

Download citation

Publish with us

Policies and ethics

Navigation