Cyclic and Long-Term Variation of Sunspot Magnetic Fields

  • Chapter
Solar Origins of Space Weather and Space Climate

Abstract

Measurements from the Mount Wilson Observatory (MWO) were used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that presented in Pevtsov et al. (Astrophys. J. Lett. 742, L36, 2011), we selected the sunspot with the strongest measured field strength for each observing week and computed monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500 – 700 gauss (G), but no statistically significant long-term trends. Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for cycles 15 – 19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500 – 700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300 – 350 G, and, following a broad maximum in 1920 – 1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scaled the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (the linear fit to the data yields a slope of − 0.2±0.8 G year−1). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21 – 23) with a mean downward trend of ≈ 15 G year−1.

Solar Origins of Space Weather and Space Climate

Guest Editors: I. González Hernández, R. Komm, and A. Pevtsov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Pevtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pevtsov, A.A., Bertello, L., Tlatov, A.G., Kilcik, A., Nagovitsyn, Y.A., Cliver, E.W. (2013). Cyclic and Long-Term Variation of Sunspot Magnetic Fields. In: González Hernández, I., Komm, R., Pevtsov, A., Leibacher, J. (eds) Solar Origins of Space Weather and Space Climate. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1182-0_11

Download citation

Publish with us

Policies and ethics

Navigation