Energetics of Cofactors in Photosynthetic Complexes: Relationship Between Protein–Cofactor Interactions and Midpoint Potentials

  • Chapter
  • First Online:
The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

Abstract

In photosynthetic organisms, solar energy drives electron and proton transfer reactions across cell membranes in order to create energy-rich compounds. These reactions are performed by pigment–protein complexes, including bacterial reaction centers and photosystem II. In this chapter we discuss how electron transfer is determined by the transition energies and oxidation–reduction midpoint potentials of the cofactors and how protein environments can alter the energetics of these cofactors, in particular the primary electron donors, the bacteriochlorophyll dimer of reaction centers and P680 of photosystem II. A Hückel model is presented that provides an accurate description of the electronic structure of the bacteriochlorophyll dimer, including why specific protein interactions, namely, electrostatic and hydrogen bonding interactions, alter not only the oxidation–reduction midpoint potentials but also the electron spin distribution. A special focus is placed on how protein environments can create strong oxidants, including the ability of photosystem II to perform the highly oxidizing reactions needed to oxidize water and the involvement of the Mn4Ca cluster in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.

    Google Scholar 

  2. Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Dordrecht: Springer; 2009.

    Google Scholar 

  3. Wydrzynski TJ, Satoh K, editors. Photosystem II: the light-driven water:plastoquinone oxidoreductase. Dordrecht: Springer; 2005.

    Google Scholar 

  4. Rutherford AW, Osyczka A, Rappaport F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett. 2012;586(5):603–16.

    Article  Google Scholar 

  5. Williams JC, Allen JP. Directed modification of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Dordrecht: Kluwer; 2009.

    Google Scholar 

  6. Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature. 1985;318(6047):618–24.

    Article  ADS  Google Scholar 

  7. Deisenhofer J, Epp O, Sinning I, Michel H. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995;246(3):429–57.

    Article  Google Scholar 

  8. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987;84(16):5730–4.

    Article  ADS  Google Scholar 

  9. Chang CH, El-Kabbani O, Tiede D, Norris J, Schiffer M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry. 1991;30(22):5352–60.

    Article  Google Scholar 

  10. Ermler U, Fritzsch G, Buchanan SK, Michel H. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure. 1994;2(10):925–36.

    Article  Google Scholar 

  11. McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci U S A. 1999;96(26):14706–11.

    Article  ADS  Google Scholar 

  12. Camara-Artigas A, Brune D, Allen JP. Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci U S A. 2002;99(17):11055–60.

    Article  ADS  Google Scholar 

  13. Debus RJ, Feher G, Okamura MY. LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry. 1985;24(10):2488–500.

    Article  Google Scholar 

  14. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature. 2001;409(6821):739–43.

    Article  ADS  Google Scholar 

  15. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygen-evolving center. Science. 2004;303(5665):1831–8.

    Article  ADS  Google Scholar 

  16. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature. 2005;438(7070):1040–4.

    Article  ADS  Google Scholar 

  17. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science. 2006;314(5800):821–5.

    Article  ADS  Google Scholar 

  18. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60.

    Article  ADS  Google Scholar 

  19. Nanba O, Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987;84(1):109–12.

    Article  ADS  Google Scholar 

  20. Rappaport F, Diner BA. Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev. 2008;252(3–4):259–72.

    Article  Google Scholar 

  21. Renger G, Renger T. Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res. 2008;98(1–3):53–80.

    Article  Google Scholar 

  22. Grimm B, Porra RJ, Rüdiger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls. Dordrecht: Springer; 2006.

    Google Scholar 

  23. Bylina EJ, Kirmaier C, McDowell L, Holten D, Youvan DC. Influence of an amino-acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex. Nature. 1988;336(6195):182–4.

    Article  ADS  Google Scholar 

  24. Breton J, Nabedryk E, Allen JP, Williams JC. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C = O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1997;36(15):4515–25.

    Article  Google Scholar 

  25. Dahlbom MG, Reimers JR. Successes and failures of time-dependent density functional theory for the low-lying excited states of chlorophylls. Mol Phys. 2005;103(6–8):1057–65.

    Article  ADS  Google Scholar 

  26. Rätsep M, Cai ZL, Reimers JR, Freiberg A. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q y fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys. 2011;134(2):024506.

    ADS  Google Scholar 

  27. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature. 2005;434(7033):625–8.

    Article  ADS  Google Scholar 

  28. Read EL, Engel GS, Calhoun TR, Mančal T, Ahn TK, Blankenship RE, Fleming GR. Cross-peak-specific two-dimensional electronic spectroscopy. Proc Natl Acad Sci U S A. 2007;104(36):14203–8.

    Article  ADS  Google Scholar 

  29. Matthews BW, Fenna RE, Bolognesi MC, Schmid MF, Olson JM. Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol. 1979;131(2):259–85.

    Article  Google Scholar 

  30. Tronrud DE, Schmid MF, Matthews BW. Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol. 1986;188(3):443–54.

    Article  Google Scholar 

  31. Li YF, Zhou W, Blankenship RE, Allen JP. Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol. 1997;271(3):456–71.

    Article  Google Scholar 

  32. Ben-Shem A, Frolow F, Nelson N. Evolution of photosystem I-from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 2004;564(3):274–80.

    Article  Google Scholar 

  33. Tronrud DE, Wen J, Gay L, Blankenship RE. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res. 2009;100(2):79–87.

    Article  Google Scholar 

  34. Larson CR, Seng CO, Lauman L, Matthies HJ, Wen J, Blankenship RE, Allen JP. The three-dimensional structure of the FMO protein from Pelodictyon phaeum and the implications for energy transfer. Photosynth Res. 2011;107(2):139–50.

    Article  Google Scholar 

  35. Watanabe T, Kobayashi M. Electrochemistry of chlorophylls. In: Scheer H, editor. Chlorophylls. Boca Raton, FL: CRC Press; 1991.

    Google Scholar 

  36. Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T. Redox potential of chlorophyll d in vitro. Biochim Biophys Acta. 2007;1767(6):596–602.

    Article  Google Scholar 

  37. Woodbury NW, Allen JP. The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.

    Google Scholar 

  38. Wang H, Lin S, Allen JP, Williams JC, Blankert S, Laser C, Woodbury NW. Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science. 2007;316(5825):747–50.

    Article  ADS  Google Scholar 

  39. Moss DA, Leonhard M, Bauscher M, Mäntele W. Electrochemical redox titration of cofactors in the reaction center from Rhodobacter sphaeroides. FEBS Lett. 1991;283(1):33–6.

    Article  Google Scholar 

  40. Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW, Allen JP. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1992;31(45):11029–37.

    Article  Google Scholar 

  41. Nagarajan V, Parson WW, Davis D, Schenck CC. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry. 1993;32(46):12324–36.

    Article  Google Scholar 

  42. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC. Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1994;91(22):10265–9.

    Article  ADS  Google Scholar 

  43. Dutton PL, Petty KM, Bonner HS, Morse SD. Cytochrome c 2 and reaction center of Rhodopseudomonas sphaeroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics, and electric field alterations. Biochim Biophys Acta. 1975;387(3):536–56.

    Article  Google Scholar 

  44. Lin X, Williams JC, Allen JP, Mathis P. Relationship between rate and free energy difference for electron transfer from cytochrome c 2 to the reaction center in Rhodobacter sphaeroides. Biochemistry. 1994;33(46):13517–23.

    Article  Google Scholar 

  45. Nitschke W, Dracheva SM. Reaction center associated cytochromes. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995.

    Google Scholar 

  46. Alric J, Cuni A, Maki H, Nagashima KVP, Verméglio A, Rappaport F. Electrostatic interaction between redox cofactors in photosynthetic reaction centers. J Biol Chem. 2004;279(46):47849–55.

    Article  Google Scholar 

  47. Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP. Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 2001;40(50):15403–7.

    Article  Google Scholar 

  48. Johnson ET, Parson WW. Electrostatic interactions in an integral membrane protein. Biochemistry. 2002;41(20):6483–94.

    Article  Google Scholar 

  49. Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B. 2002;106(45):11859–69.

    Google Scholar 

  50. Muegge I, Apostolakis J, Ermler U, Fritzsch G, Lubitz W, Knapp EW. Shift of the special pair redox potential: electrostatic energy computations of mutants of the reaction center from Rhodobacter sphaeroides. Biochemistry. 1996;35(25):8359–70.

    Article  Google Scholar 

  51. Stocker JW, Taguchi AKW, Murchison HA, Woodbury NW, Boxer SG. Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry. 1992;31(42):10356–62.

    Article  Google Scholar 

  52. Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW, Williams JC. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry. 1993;32(13):3498–505.

    Article  Google Scholar 

  53. Spiedel D, Roszak AW, McKendrick K, McAuley KE, Fyfe PK, Nabedryk E, Breton J, Robert B, Cogdell RJ, Isaacs NW, Jones MR. Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure. Biochim Biophys Acta. 2002;1554(1–2):75–93.

    Article  Google Scholar 

  54. Arlt T, Bibikova M, Penzkofer H, Oesterhelt D, Zinth W. Strong acceleration of primary photosynthetic electron transfer in a mutated reaction center of Rhodopseudomonas viridis. J Phys Chem. 1996;100(29):12060–5.

    Google Scholar 

  55. Nabedryk E, Allen JP, Taguchi AKW, Williams JC, Woodbury NW, Breton J. Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131. Biochemistry. 1993;32(50):13879–85.

    Article  Google Scholar 

  56. Mattioli TA, Williams JC, Allen JP, Robert B. Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry. 1994;33(7):1636–43.

    Article  Google Scholar 

  57. Thielges M, Uyeda G, Cámara-Artigas A, Kálmán L, Williams JC, Allen JP. Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry. 2005;44(20):7389–94.

    Article  Google Scholar 

  58. Lancaster CRD, Bibikova MV, Sabatino P, Oesterhelt D, Michel H. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-Å resolution. J Biol Chem. 2000;275(50):39364–8.

    Article  Google Scholar 

  59. Plato M, Lendzian F, Lubitz W, Möbius K. Molecular orbital study of electronic asymmetry in primary donors of bacterial reaction centers. In: Breton J, Verméglio A, editors. The photosynthetic bacterial reaction center II: structure, spectroscopy, and dynamics. New York: Plenum; 1992.

    Google Scholar 

  60. Breton J, Nabedryk E, Parson WW. A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls. Biochemistry. 1992;31(33):7503–10.

    Article  Google Scholar 

  61. Huber M. On the electronic structure of the primary electron donor in bacterial photosynthesis—the bacteriochlorophyll dimer as viewed by EPR/ENDOR methods. Photosynth Res. 1997;52(1):1–26.

    Article  Google Scholar 

  62. Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP, Lubitz W. ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry. 1995;34(25):8130–43.

    Article  Google Scholar 

  63. Artz K, Williams JC, Allen JP, Lendzian F, Rautter J, Lubitz W. Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1997;94(25):13582–7.

    Article  ADS  Google Scholar 

  64. Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W. Pigment-protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B. 2002;106(12):3226–36.

    Google Scholar 

  65. Reimers JR, Hush NS. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis. J Am Chem Soc. 2004;126(13):4132–44.

    Article  Google Scholar 

  66. Bylina EJ, Youvan DC. Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci U S A. 1988;85(19):7226–30.

    Article  ADS  Google Scholar 

  67. Kirmaier C, Holten D, Bylina EJ, Youvan DC. Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci U S A. 1988;85(20):7562–6.

    Article  ADS  Google Scholar 

  68. McDowell LM, Gaul D, Kirmaier C, Holten D, Schenck CC. Investigation into the source of electron transfer asymmetry in bacterial reaction centers. Biochemistry. 1991;30(34):8315–22.

    Article  Google Scholar 

  69. van Brederode ME, van Stokkum IHM, Katilius E, van Mourik F, Jones MR, van Grondelle R. Primary charge separation routes in the BChl:BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry. 1999;38(23):7545–55.

    Article  Google Scholar 

  70. King BA, de Winter A, McAnaney TB, Boxer SG. Excited state energy transfer pathways in photosynthetic reaction centers. 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B. 2001;105(9):1856–62.

    Google Scholar 

  71. Camara-Artigas A, Magee C, Goetsch A, Allen JP. The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 Å resolution. Photosynth Res. 2002;74(1):87–93.

    Article  Google Scholar 

  72. Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn M, Lubitz W. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1996;35(21):6612–9.

    Article  Google Scholar 

  73. Zhou H, Boxer SG. Charge resonance effects on electronic absorption line shapes: application to the heterodimer absorption of bacterial photosynthetic reaction centers. J Phys Chem B. 1997;101(29):5759–66.

    Google Scholar 

  74. Treynor TP, Andrews SS, Boxer SG. Intervalence band Stark effect of the special pair radical cation in bacterial photosynthetic reaction centers. J Phys Chem B. 2003;107(40):11230–9.

    Google Scholar 

  75. Klimov VV, Allakhverdiev SI, Demeter S, Krasnovskii AA. Photoreduction of pheophytin in photosystem 2 of chloroplasts with respect to redox potential of the medium. Dokl Akad Nauk SSSR. 1979;249(1):227–30.

    Google Scholar 

  76. Ishikita H, Saenger W, Biesiadka J, Loll B, Knapp EW. How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proc Natl Acad Sci U S A. 2006;103(26):9855–60.

    Article  ADS  Google Scholar 

  77. Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen JR, Ishikita H. Distribution of the cationic state over the chlorophyll pair of the photosystem II reaction center. J Am Chem Soc. 2011;133(36):14379–88.

    Article  Google Scholar 

  78. Takahashi R, Hasegawa K, Noguchi T. Effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II as studied by density functional theory calculations. Biochemistry. 2008;47(24):6289–91.

    Article  Google Scholar 

  79. Tommos C, Babcock GT. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000;1458(1):199–219.

    Article  Google Scholar 

  80. Kálmán L, Thielges MC, Williams JC, Allen JP. Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Biochemistry. 2005;44(40):13266–73.

    Article  Google Scholar 

  81. Kálmán L, Williams JC, Allen JP. Energetics for oxidation of a bound manganese cofactor in modified bacterial reaction centers. Biochemistry. 2011;50(16):3310–20.

    Article  Google Scholar 

  82. Allen JP, Olson TL, Oyala P, Lee WJ, Tufts A, Williams JC. Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers. Proc Natl Acad Sci U S A. 2012;109(7):2314–8.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Allen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, J.P., Williams, J.C. (2014). Energetics of Cofactors in Photosynthetic Complexes: Relationship Between Protein–Cofactor Interactions and Midpoint Potentials. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_9

Download citation

Publish with us

Policies and ethics

Navigation