The Chaperone Networks: A Heat Shock Protein (Hsp)70 Perspective

  • Chapter
  • First Online:
The Molecular Chaperones Interaction Networks in Protein Folding and Degradation

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

  • 1426 Accesses

Abstract

The heat shock protein (Hsp)70 protein chaperone is a ubiquitous and promiscuous simple machine that functions in a wide variety of cellular processes. Its primary role of binding short, exposed hydrophobic stretches in misfolded polypeptides is augmented by the participation of an array of partners that act at multiple levels to govern Hsp70 functionality. Protein folding by Hsp70 is adenosine triphosphate (ATP)-dependent and the state of nucleotide binding is driven by dedicated Hsp70 cofactors. Moreover, these and other associates provide functional specificity by virtue of pathway-specific interactions that both recruit and regulate Hsp70 to provide critical protein remodeling contributions. In this chapter, we break down these interactions into two broad themes: protein biogenesis and maturation, and quality control surveillance and degradation. Key findings that establish the pathway- or process-specific network around Hsp70 supporting each cellular activity are discussed, with special attention paid to protein interactions that dictate the contextual role Hsp70 plays. Understanding these various chaperone networks is a requisite first step in designing pathway-specific pharmacological agents for potential therapeutic intervention in protein misfolding disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272(5268):1606–1614

    CAS  PubMed  Google Scholar 

  2. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Cancer 13(10):630–642. doi:10.1038/nrm3658

    Google Scholar 

  3. Vogel M, Mayer MP, Bukau B (2006) Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J Biol Chem 281(50):38705–38711. doi:10.1074/jbc.M609020200

    CAS  PubMed  Google Scholar 

  4. Popp S, Packschies L, Radzwill N, Vogel KP, Steinhoff HJ, Reinstein J (2005) Structural dynamics of the DnaK-peptide complex. J Mol Biol 347(5):1039–1052. doi:10.1016/j.jmb.2005.02.026

    CAS  PubMed  Google Scholar 

  5. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346(6285):623–628

    CAS  PubMed  Google Scholar 

  6. Takeda S, McKay DB (1996) Kinetics of peptide binding to the bovine 70 kDa heat shock cognate protein, a molecular chaperone. BioChemistry 35(14):4636–4644. doi:10.1021/bi952903o

    CAS  PubMed  Google Scholar 

  7. Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263(5):657–670. doi:10.1006/jmbi.1996.0606

    CAS  PubMed  Google Scholar 

  8. Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–351. doi:10.1038/nsmb.2006

    CAS  PubMed  Google Scholar 

  9. Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48(6):863–874. doi:10.1016/j.molcel.2012.09.023

    CAS  PubMed  Google Scholar 

  10. Wu CC, Naveen V, Chien CH, Chang YW, Hsiao CD (2012) Crystal structure of DnaK protein complexed with nucleotide exchange factor GrpE in DnaK chaperone system: insight into intermolecular communication. J Biol Chem 287(25):21461–21470. doi:10.1074/jbc.M112.344358

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhuravleva A, Clerico EM, Gierasch LM (2012) An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151(6):1296–1307. doi:10.1016/j.cell.2012.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Davis JE, Voisine C, Craig EA (1999) Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Proc Natl Acad Sci U S A 96(16):9269–9276

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21

    CAS  PubMed  Google Scholar 

  14. Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R (2007) Structural basis of J cochaperone binding and regulation of Hsp70. Mol Cell 28(3):422–433. doi:10.1016/j.molcel.2007.08.022

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273(6):3679–3686

    CAS  PubMed  Google Scholar 

  16. Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271(16):9347–9354

    CAS  PubMed  Google Scholar 

  17. Cyr DM (1995) Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett 359(2–3):129–132

    CAS  PubMed  Google Scholar 

  18. Li J, Qian X, Sha B (2003) The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11(12):1475–1483

    CAS  PubMed  Google Scholar 

  19. Wall D, Zylicz M, Georgopoulos C (1995) The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 270(5):2139–2144

    CAS  PubMed  Google Scholar 

  20. Kam**a HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11 (8):579–592. doi:nrm2941 [pii], 10.1038/nrm2941

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40 s in Saccharomyces cerevisiae. J Cell Biol 152(4):851–856

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131(1):106–120. doi:10.1016/j.cell.2007.08.039

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133(6):1068–1079. doi:10.1016/j.cell.2008.05.022

    CAS  PubMed  Google Scholar 

  24. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, ** S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31(2):232–243. doi:10.1016/j.molcel.2008.05.006

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Trott A, Shaner L, Morano KA (2005) The molecular chaperone Sse1 and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae. Genetics 170(3):1009–1021. doi:10.1534/genetics.105.043109

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA (2012) Hsp110 is required for spindle length control. J Cell Biol 198(4):623–636. doi:10.1083/jcb.201111105

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Shaner L, Gibney PA, Morano KA (2008) The Hsp110 protein chaperone Sse1 is required for yeast cell wall integrity and morphogenesis. Curr Genet 54(1):1–11. doi:10.1007/s00294-008-0193-y

    CAS  PubMed  Google Scholar 

  28. Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem 274(22):15712–15718

    CAS  PubMed  Google Scholar 

  29. Park J, Easton DP, Chen X, MacDonald IJ, Wang XY, Subjeck JR (2003) The chaperoning properties of mouse grp170, a member of the third family of hsp70 related proteins. BioChemistry 42(50):14893–14902. doi:10.1021/bi030122e

    CAS  PubMed  Google Scholar 

  30. Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE (2005) The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37(12):1309–1311

    CAS  PubMed  Google Scholar 

  31. Goeckeler JL, Petruso AP, Aguirre J, Clement CC, Chiosis G, Brodsky JL (2008) The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett 582(16):2393–2396. doi:S0014-5793(08)00477-8 [pii], 10.1016/j.febslet.2008.05.047

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Polier S, Hartl FU, Bracher A (2010) Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J Mol Biol 401(5):696–707. doi:10.1016/j.jmb.2010.07.004

    CAS  PubMed  Google Scholar 

  33. Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q (2012) Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 287(8):5661–5672. doi:10.1074/jbc.M111.275057

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Pechmann S, Willmund F, Frydman J (2013) The ribosome as a hub for protein quality control. Mol Cell 49(3):411–421. doi:10.1016/j.molcel.2013.01.020

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Duttler S, Pechmann S, Frydman J (2013) Principles of cotranslational ubiquitination and quality control at the ribosome. Mol Cell 50(3):379–393. doi:10.1016/j.molcel.2013.03.010

    CAS  PubMed  Google Scholar 

  36. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400(6745):693–696. doi:10.1038/23301

    CAS  PubMed  Google Scholar 

  37. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97(6):755–765

    CAS  PubMed  Google Scholar 

  38. Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003) Trigger factor and DnaK possess overlap** substrate pools and binding specificities. Mol Microbiol 47(5):1317–1328

    CAS  PubMed  Google Scholar 

  39. Rutkowska A, Mayer MP, Hoffmann A, Merz F, Zachmann-Brand B, Schaffitzel C, Ban N, Deuerling E, Bukau B (2008) Dynamics of trigger factor interaction with translating ribosomes. J Biol Chem 283(7):4124–4132. doi:10.1074/jbc.M708294200

    CAS  PubMed  Google Scholar 

  40. Preissler S, Deuerling E (2012) Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 37(7):274–283. doi:10.1016/j.tibs.2012.03.002

    CAS  PubMed  Google Scholar 

  41. Huang P, Gautschi M, Walter W, Rospert S, Craig EA (2005) The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12(6):497–504

    CAS  PubMed  Google Scholar 

  42. Yam AY, Albanese V, Lin HT, Frydman J (2005) Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 280(50):41252–41261. doi:10.1074/jbc.M503615200

    CAS  PubMed  Google Scholar 

  43. Hundley HA, Walter W, Bairstow S, Craig EA (2005) Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308(5724):1032–1034

    CAS  PubMed  Google Scholar 

  44. Jaiswal H, Conz C, Otto H, Wolfle T, Fitzke E, Mayer MP, Rospert S (2011) The chaperone network connected to human ribosome-associated complex. Mol Cell Biol 31(6):1160–1173. doi:10.1128/MCB.00986-10

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Broadley SA, Hartl FU (2009) The role of molecular chaperones in human misfolding diseases. FEBS Lett 583(16):2647–2653. doi:10.1016/j.febslet.2009.04.029

    CAS  PubMed  Google Scholar 

  46. Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA, Wiedmann M, Craig EA (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17(14):3981–3989. doi:10.1093/emboj/17.14.3981

    CAS  PubMed Central  PubMed  Google Scholar 

  47. James P, Pfund C, Craig EA (1997) Functional specificity among Hsp70 molecular chaperones. Science 275(5298):387–389

    CAS  PubMed  Google Scholar 

  48. Peisker K, Chiabudini M, Rospert S (2010) The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. Biochim Biophys Acta 1803(6):662–672. doi:10.1016/j.bbamcr.2010.03.005

    CAS  PubMed  Google Scholar 

  49. Leidig C, Bange G, Kopp J, Amlacher S, Aravind A, Wickles S, Witte G, Hurt E, Beckmann R, Sinning I (2013) Structural characterization of a eukaryotic chaperone-the ribosome-associated complex. Nat Struct Mol Biol 20(1):23–28. doi:10.1038/nsmb.2447

    CAS  PubMed  Google Scholar 

  50. Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E (2010) Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J Biol Chem 285(5):3227–3234. doi:M109.075804 [pii], 10.1074/jbc.M109.075804

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, Tartaglia GG, Hayer-Hartl M, Hartl FU (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1 (3):251–264. doi:10.1016/j.celrep. 2011.12.007

    CAS  PubMed  Google Scholar 

  52. Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17(16):4809–4817. doi:10.1093/emboj/17.16.4809

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Peisker K, Braun D, Wolfle T, Hentschel J, Funfschilling U, Fischer G, Sickmann A, Rospert S (2008) Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol Biol Cell 19(12):5279–5288. doi:10.1091/mbc.E08- 06-0661

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275. doi:msb200926 [pii], 10.1038/msb.2009.26

    PubMed Central  PubMed  Google Scholar 

  55. Willmund F, del Alamo M, Pechmann S, Chen T, Albanese V, Dammer EB, Peng J, Frydman J (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196–209. doi:10.1016/j.cell.2012.12.001

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Otto H, Conz C, Maier P, Wolfle T, Suzuki CK, Jeno P, Rucknagel P, Stahl J, Rospert S (2005) The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci U S A 102(29):10064–10069. doi:10.1073/pnas.0504400102

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Shaner L, Sousa R, Morano KA (2006) Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. BioChemistry 45(50):15075–15084. doi:10.1021/bi061279k

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Oh HJ, Chen X, Subjeck JR (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272(50):31636–31640

    CAS  PubMed  Google Scholar 

  59. Verghese J, Morano KA (2012) A lysine-rich region within fungal BAG domain-containing proteins mediates a novel association with ribosomes. Eukaryot Cell 11(8):1003–1011. doi:10.1128/EC.00146-12

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kurzchalia TV, Wiedmann M, Girshovich AS, Bochkareva ES, Bielka H, Rapoport TA (1986) The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of the signal recognition particle. Nature 320(6063):634–636. doi:10.1038/320634a0

    CAS  PubMed  Google Scholar 

  61. Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R (2004) Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427(6977):808–814. doi:10.1038/nature02342

    CAS  PubMed  Google Scholar 

  62. Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91(2 Pt 1):557–561

    CAS  PubMed  Google Scholar 

  63. Becker J, Walter W, Yan W, Craig EA (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol Cell Biol 16(8):4378–4386

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Karbstein K (2010) Chaperoning ribosome assembly. J Cell Biol 189(1):11–12. doi:10.1083/jcb.201002102

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Albanese V, Reissmann S, Frydman J (2010) A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J Cell Biol 189(1):69–81. doi:10.1083/jcb.201001054

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA (2007) The specialized cytosolic J-protein, Jjj1, functions in 60 S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 104(5):1558–1563. doi:10.1073/pnas.0610704104

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Meyer AE, Hoover LA, Craig EA (2010) The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J Biol Chem 285(2):961–968. doi:10.1074/jbc.M109.038349

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Herrmann JM, Stuart RA, Craig EA, Neupert W (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol 127(4):893–902

    CAS  PubMed  Google Scholar 

  69. Maki JA, Southworth DR, Culver GM (2003) Demonstration of the role of the DnaK chaperone system in assembly of 30 S ribosomal subunits using a purified in vitro system. RNA 9(12):1418–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Maki JA, Schnobrich DJ, Culver GM (2002) The DnaK chaperone system facilitates 30S ribosomal subunit assembly. Mol Cell 10(1):129–138

    CAS  PubMed  Google Scholar 

  71. Alix JH, Guerin MF (1993) Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci U S A 90(20):9725–9729

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Martinez-Hackert E, Hendrickson WA (2009) Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138(5):923–934. doi:10.1016/j.cell.2009.07.044

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Meunier L, Usherwood YK, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13(12):4456–4469. doi:10.1091/mbc.E02-05-0311

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274(6):3453–3460

    CAS  PubMed  Google Scholar 

  75. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ (2004) Coordinated activation of Hsp70 chaperones. Science 303(5654):98–101. doi:10.1126/science.1092287

    CAS  PubMed  Google Scholar 

  76. Weitzmann A, Baldes C, Dudek J, Zimmermann R (2007) The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum—a quantitative approach. FEBS J 274(19):5175–5187. doi:10.1111/j.1742-4658.2007.06039.x

    CAS  PubMed  Google Scholar 

  77. Hale SJ, Lovell SC, de Keyzer J, Stirling CJ (2010) Interactions between Kar2p and its nucleotide exchange factors Sil1p and Lhs1p are mechanistically distinct. J Biol Chem 285(28):21600–21606. doi:10.1074/jbc.M110.111211

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Simons JF, Ferro-Novick S, Rose MD, Helenius A (1995) BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J Cell Biol 130(1):41–49

    CAS  PubMed  Google Scholar 

  79. Lin HY, Masso-Welch P, Di YP, Cai JW, Shen JW, Subjeck JR (1993) The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol Biol Cell 4(11):1109–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Craven RA, Egerton M, Stirling CJ (1996) A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. Embo J 15(11):2640–2650

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudnik-Schoneborn S, Blaschek A, Wolf NI, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendershot LM, Schroder JM, Lochmuller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37(12):1312–1314. doi:10.1038/ng1678

    CAS  PubMed  Google Scholar 

  82. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. Embo J 19(23):6440–6452. doi:10.1093/emboj/19.23.6440

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321(5888):569–572. doi:10.1126/science.1159293

    CAS  PubMed  Google Scholar 

  84. Hagiwara M, Maegawa K, Suzuki M, Ushioda R, Araki K, Matsumoto Y, Hoseki J, Nagata K, Inaba K (2011) Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 41(4):432–444. doi:10.1016/j.molcel.2011.01.021

    CAS  PubMed  Google Scholar 

  85. Mizzen LA, Chang C, Garrels JI, Welch WJ (1989) Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J Biol Chem 264(34):20664–20675

    CAS  PubMed  Google Scholar 

  86. Bhattacharyya T, Karnezis AN, Murphy SP, Hoang T, Freeman BC, Phillips B, Morimoto RI (1995) Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 270(4):1705–1710

    CAS  PubMed  Google Scholar 

  87. Syken J, De-Medina T, Munger K (1999) TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci U S A 96(15):8499–8504

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Voos W, Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592(1):51–62

    CAS  PubMed  Google Scholar 

  89. Voos W, Gambill BD, Laloraya S, Ang D, Craig EA, Pfanner N (1994) Mitochondrial GrpE is present in a complex with hsp70 and preproteins in transit across membranes. Mol Cell Biol 14(10):6627–6634

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Andrew AJ, Dutkiewicz R, Knieszner H, Craig EA, Marszalek J (2006) Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe-S cluster biogenesis, Isu1p. J Biol Chem 281(21):14580–14587. doi:10.1074/jbc.M600842200

    CAS  PubMed  Google Scholar 

  91. Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278(32):29719–29727

    CAS  PubMed  Google Scholar 

  92. Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U (2013) The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 24(12):1830–1841. doi:10.1091/mbc.E12-09-0644

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Bonomi F, Iametti S, Morleo A, Ta D, Vickery LE (2008) Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. BioChemistry 47(48):12795–12801. doi:10.1021/bi801565j

    CAS  PubMed  Google Scholar 

  94. Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273(52):35194–35200

    CAS  PubMed  Google Scholar 

  95. Smith DF (2004) Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones 9(2):109–121

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson DN, Piper PW, Pearl LH, Prodromou C (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277(23):20151–20159. doi:10.1074/jbc.M201287200

    CAS  PubMed  Google Scholar 

  97. Heldens L, Hensen SM, Onnekink C, van Genesen ST, Dirks RP, Lubsen NH (2011) An atypical unfolded protein response in heat shocked cells. PLoS ONE 6(8):e23512. doi:10.1371/journal.pone.0023512

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Hodson S, Marshall JJ, Burston SG (2012) Map** the road to recovery: the ClpB/Hsp104 molecular chaperone. J Struct Biol 179(2):161–171. doi:10.1016/j.jsb.2012.05.015

    CAS  PubMed  Google Scholar 

  99. Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J Bacteriol 171(5):2680–2688

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Boorstein WR, Craig EA (1990) Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J Biol Chem 265(31):18912–18921

    CAS  PubMed  Google Scholar 

  101. Lu Z, Cyr DM (1998) Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273(43):27824–27830

    CAS  PubMed  Google Scholar 

  102. Winkler J, Tyedmers J, Bukau B, Mogk A (2012) Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol 198(3):387–404. doi:10.1083/jcb.201201074

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Schmitt M, Neupert W, Langer T (1996) The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J Cell Biol 134(6):1375–1386

    CAS  PubMed  Google Scholar 

  104. Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279(28):29139–29146. doi:10.1074/jbc.M403777200

    CAS  PubMed  Google Scholar 

  105. Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6(10):e26319. doi:10.1371/journal.pone.0026319

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lee J, Kim JH, Biter AB, Sielaff B, Lee S, Tsai FT (2013) Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proc Natl Acad Sci U S A 110(21):8513–8518. doi:10.1073/pnas.1217988110

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, Bukau B, Mogk A (2007) M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25(2):247–260. doi:10.1016/j.molcel.2006.11.008

    CAS  PubMed  Google Scholar 

  108. Desantis ME, Shorter J (2012) The elusive middle domain of Hsp104 and ClpB: location and function. Biochim Biophys Acta 1823(1):29–39. doi:10.1016/j.bbamcr.2011.07.014

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Miot M, Reidy M, Doyle SM, Hoskins JR, Johnston DM, Genest O, Vitery MC, Masison DC, Wickner S (2011) Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 108(17):6915–6920. doi:10.1073/pnas.1102828108

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Seyffer F, Kummer E, Oguchi Y, Winkler J, Kumar M, Zahn R, Sourjik V, Bukau B, Mogk A (2012) Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat Struct Mol Biol 19(12):1347–1355. doi:10.1038/nsmb.2442

    CAS  PubMed  Google Scholar 

  111. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339(6123):1080–1083. doi:10.1126/science.1233066

    CAS  PubMed  Google Scholar 

  112. Zietkiewicz S, Krzewska J, Liberek K (2004) Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem 279(43):44376–44383. doi:10.1074/jbc.M402405200

    CAS  PubMed  Google Scholar 

  113. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31(21):4221–4235. doi:10.1038/emboj.2012.264

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    CAS  PubMed  Google Scholar 

  115. Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23(3):638–649. doi:10.1038/sj.emboj.7600080, 7600080 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280 (25):23869–23875. doi:M502854200 [pii], 10.1074/jbc.M502854200

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Specht S, Miller SB, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195(4):617–629. doi:10.1083/jcb.201106037

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Garrido C, Paul C, Seigneuric R, Kam**a HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44(10):1588–1592. doi:10.1016/j.biocel.2012.02.022

    CAS  PubMed  Google Scholar 

  120. Mogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278(33):31033–31042. doi:10.1074/jbc.M303587200

    CAS  PubMed  Google Scholar 

  121. Goldbaum O, Riedel M, Stahnke T, Richter-Landsberg C (2009) The small heat shock protein HSP25 protects astrocytes against stress induced by proteasomal inhibition. Glia 57(14):1566–1577. doi:10.1002/glia.20870

    PubMed  Google Scholar 

  122. Shiber A, Breuer W, Brandeis M, Ravid T (2013) Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol Biol Cell 24(13):2076–2087. doi:10.1091/mbc.E13 - 01-0010

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23(16):3041–3056. doi:10.1091/mbc.E12- 03-0194

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Dokladny K, Zuhl MN, Mandell M, Bhattacharya D, Schneider S, Deretic V, Moseley PL (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 288(21):14959–14972. doi:10.1074/jbc.M113.462408

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be–molecular chaperones in protein degradation. Cell Mol Life Sci 64(19-20):2525–2541. doi:10.1007/s00018-007-7188-6

    CAS  PubMed  Google Scholar 

  126. Kravtsova-Ivantsiv Y, Ciechanover A (2012) Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 125(Pt 3):539–548. doi:10.1242/jcs.093567

    CAS  PubMed  Google Scholar 

  127. Voges D, Zwickl P, Baumeister W (1999) The 26 S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. doi:10.1146/annurev.biochem.68:1.1015

    CAS  PubMed  Google Scholar 

  128. Guerriero CJ, Weiberth KF, Brodsky JL (2013) Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J Biol Chem 288(25):18506–18520. doi:10.1074/jbc.M113.475905

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40(2):238–252. doi:10.1016/j.molcel.2010.10.001

    CAS  PubMed  Google Scholar 

  131. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2(12):1133–1138. doi:10.1093/embo-reports/kve246

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105. doi:10.1038/35050509

    CAS  PubMed  Google Scholar 

  133. Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11(20):1569–1577

    CAS  PubMed  Google Scholar 

  134. Stankiewicz M, Nikolay R, Rybin V, Mayer MP (2010) CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J 277(16):3353–3367. doi:10.1111/j.1742-4658.2010.07737.x

    CAS  PubMed  Google Scholar 

  135. Westhoff B, Chapple JP, van der Spuy J, Hohfeld J, Cheetham ME (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol 15(11):1058–1064. doi:10.1016/j.cub.2005.04.058

    CAS  PubMed  Google Scholar 

  136. Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154(1):134–145. doi:10.1016/j.cell.2013.06.003

    CAS  PubMed  Google Scholar 

  137. Luders J, Demand J, Hohfeld J (2000) The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 275(7):4613–4617

    CAS  PubMed  Google Scholar 

  138. Kikukawa Y, Minami R, Shimada M, Kobayashi M, Tanaka K, Yokosawa H, Kawahara H (2005) Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. FEBS J 272(24):6373–6386. doi:10.1111/j.1742-4658.2005.05032.x

    CAS  PubMed  Google Scholar 

  139. Gowda NK, Kandasamy G, Froehlich MS, Dohmen RJ, Andreasson C (2013) Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proc Natl Acad Sci U S A 110(15):5975–5980. doi:10.1073/pnas.1216778110

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Arndt V, Daniel C, Nastainczyk W, Alberti S, Hohfeld J (2005) BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16(12):5891–5900. doi:10.1091/mbc.E05-07-0660

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Gebauer M, Zeiner M, Gehring U (1997) Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett 417(1):109–113

    CAS  PubMed  Google Scholar 

  142. Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440(7083):551–555. doi:10.1038/nature04600

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Alberti S, Demand J, Esser C, Emmerich N, Schild H, Hohfeld J (2002) Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem 277(48):45920–45927. doi:10.1074/jbc.M204196200

    CAS  PubMed  Google Scholar 

  144. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126(2):349–359. doi:10.1016/j.cell.2006.05.045

    CAS  PubMed  Google Scholar 

  145. Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14(8):3437–3448. doi:10.1091/mbc.E02-12-0847

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Soroka J, Wandinger SK, Mausbacher N, Schreiber T, Richter K, Daub H, Buchner J (2012) Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation. Mol Cell 45(4):517–528. doi:10.1016/j.molcel.2011.12.031

    CAS  PubMed  Google Scholar 

  147. Truman AW, Kristjansdottir K, Wolfgeher D, Hasin N, Polier S, Zhang H, Perrett S, Prodromou C, Jones GW, Kron SJ (2012) CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell 151(6):1308–1318. doi:10.1016/j.cell.2012.10.051

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Morano PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia, V., Morano, K. (2014). The Chaperone Networks: A Heat Shock Protein (Hsp)70 Perspective. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_4

Download citation

Publish with us

Policies and ethics

Navigation