Stability of Neutral Type Vector Functional Differential Equations with Small Principal Terms

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

This paper is devoted to the stability of neutral type functional differential equations whose principal terms are small in a certain sense. We derive the explicit conditions for the exponential and absolute stabilities, as well as for the L p-stability. Besides, solution estimates for the considered equations are established. They provide bounds for the regions of attraction of steady states. We also consider some classes of equations with neutral type linear parts and nonlinear causal map**s. These equations include differential, differential-delay, integro-differential, and other traditional equations. The main methodology presented in the paper is based on a combined usage of the recent norm estimates for matrix-valued functions with the generalized Bohl–Perron principle for neutral type functional differential equations. Our approach enables us to apply the well-known results of the theory of matrices to the stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardjouni, A., Djoudi, A.: Fixed points and stability in neutral nonlinear differential equations with variable delays. Opusc. Math. 32(1), 519–529 (2012)

    MathSciNet  Google Scholar 

  2. Azbelev, N.V., Simonov, P.M.: Stability of differential equations with aftereffects. stability. Control Theory Methods Applications, vol. 20. Taylor & Francis, London (2003)

    Google Scholar 

  3. Bellen, A., Guglielmi, B., Ruehli, A.E.: Methods for linear systems of circuits delay differential equations of neutral type. IEEE Trans. Circuits Syst. 46, 212–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berezansky, L., Braverman, E.: On exponential stability of a linear delay differential equation with an oscillating coefficient. Appl. Math. Lett. 22(12), 1833–1837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezansky, L., Braverman, E., Domoshnitsky, A.: Stability of the second order delay differential equations with a dam** term. Differ. Equ. Dyn. Syst. 16(3), 185–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bylov, B.F., Grobman, B.M., Nemyckii, V.V., Vinograd, R.E.: The Theory of Lyapunov Exponents. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  7. Cahlon, B., Schmidt, D.: Necessary conditions and algorithmic stability tests for certain higher odd order neutral delay differential equations. Dyn. Syst. Appl. 20(2–3), 223–245 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Xue, A., Lu, R., Zhou, S.: On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Anal. Theory Methods Appl. 68, 2464–2470 (2011)

    Article  MathSciNet  Google Scholar 

  9. Daleckii, Y.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Space. American Mathematical Society, Providence (1974)

    Google Scholar 

  10. Demidenko, G.V.: Stability of solutions to linear differential equations of neutral type. J. Anal. Appl. 7(3), 119–130 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Dunford, N., Schwartz, J.T.: Linear Operators: Part I. Interscience Publishers, New York (1966)

    Google Scholar 

  12. Fridman, E.: New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43, 309–319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gil’, M.I.: Operator functions and localization of spectra. Lecture Notes in Mathematics, vol. 1830. Springer, Berlin (2003)

    Google Scholar 

  14. Gil’, M.I.: Difference equations in normed spaces: stability and oscillations. North-Holland, Mathematics Studies, vol. 206. Elsevier, Amsterdam (2007)

    Google Scholar 

  15. Gil’, M.I.: Exponential stability of nonlinear neutral type systems. Arch. Control Sci. 22(2), 125–143 (2012)

    Google Scholar 

  16. Gil’, M.I.: Stability of vector functional differential equations: a survey. Quaestiones Mathematicae 35, 1–49 (2012)

    Google Scholar 

  17. Gil’, M.I.: Stability of Vector Differential Delay Equations. Birkhäuser, Basel (2013)

    Google Scholar 

  18. Gil’, M.I.: On Aizerman’s type problem for neutral type systems. Eur. J. Control 19, 113–117 (2013)

    Google Scholar 

  19. Gil’, M.I.: The generalized Bohl–Perron principle for the neutral type Vector functional differential equations. Math. Control Signals Syst. (MCSS) 25(1), 133–145 (2013)

    Google Scholar 

  20. Gil’, M.I.: Estimates for fundamental solutions of neutral type functional differential equations. Int. J. Dyn. Syst. Differ. Equ. 4(4), 255–273 (2013)

    Google Scholar 

  21. Halanay, A.: Differential Equations: Stability, Oscillation, Time Lags. Academic, New York, (1966)

    Google Scholar 

  22. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New-York (1993)

    Book  MATH  Google Scholar 

  23. Han, Q.-L.: A new delay-dependent absolute stability criterion for a class of nonlinear neutral systems. Automatica 44, 272–277 (2008)

    Article  MATH  Google Scholar 

  24. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic, London (1986)

    MATH  Google Scholar 

  25. Nam, P.T., Phat, V.N.: An improved stability criterion for a class of neutral differential equations. Appl. Math. Lett. 22, 31–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Park, J.H., Won, S.: Stability analysis for neutral delay-differential systems. J. Franklin Inst. 337, 67–75 (2000)

    Article  MathSciNet  Google Scholar 

  27. Sun, Y., Wang, L.: Note on asymptotic stability of a class of neutral differential equations. Appl. Math. Lett. 19, 949–953 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Walther, H-O: More on linearized stability for neutral equations with state-dependent delays. Differ. Equ. Dyn. Syst. 19(4), 315–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Li, S., Xu, D.: Globally exponential stability of periodic solutions for impulsive neutral-type neural networks with delays. Nonlinear Dyn. 64, 65–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, M., He, Y., She, J.-H.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Autom. Control 49, 2266–2271 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gil’ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gil’, M. (2014). Stability of Neutral Type Vector Functional Differential Equations with Small Principal Terms. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_10

Download citation

Publish with us

Policies and ethics

Navigation