A Schematic Workflow for Collecting Information About the Interaction Between Copy Number Variants and MicroRNAs Using Existing Resources

  • Protocol
  • First Online:
RNA Map**

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1182))

  • 4800 Accesses

Abstract

MicroRNAs (miRNAs) and copy number variations (CNVs) are two extensively studied genomic components in the field of modern biology—as they have been found to be associated with many disorders such as cancer, Alzheimer, pancreatitis, HIV susceptibility, beta-thalassemia, and glomerulonephritis. Several studies suggested that an alteration in CNV–miRNA interaction could result in some human diseases such as cancer. Therefore, the possible miRNA-binding site information within the CNV genes opens new avenues in understanding such disorders. In this chapter, we present a schematic approach for collecting the information on CNV–miRNA interactions using miRWalk and TargetScan databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5:e1000327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zaman MS, Shahryari V, Deng G et al (2012) Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 7:e31060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  CAS  PubMed  Google Scholar 

  4. Cheng C, Li W, Zhang Z et al (2013) MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288:13748–13761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Le Marechal C, Masson E, Chen JM et al (2006) Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet 38:1372–1374

    Article  PubMed  Google Scholar 

  6. Li A, Yu J, Kim H et al (2013) MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res 19:3600–3610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Townson JR, Barcellos LF, Nibbs RJ (2002) Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 32:3016–3026

    Article  CAS  PubMed  Google Scholar 

  8. Narayanan A, Iordanskiy S, Das R et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Aitman TJ, Dong R, Vyse TJ et al (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    Article  CAS  PubMed  Google Scholar 

  10. Papagregoriou G, Erguler K, Dweep H et al (2012) A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. PLoS One 7:e31021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  12. Kim DH, Saetrom P, Snove O Jr et al (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105:16230–16235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  14. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39: D152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Conrad DF, Pinto D, Redon R et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464: 704–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951

    Article  CAS  PubMed  Google Scholar 

  17. Dear PH (2009) Copy-number variation: the end of the human genome? Trends Biotechnol 27:448–454

    Article  CAS  PubMed  Google Scholar 

  18. Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases and gene expression. Hum Mol Genet 18:R1–8

    Article  CAS  PubMed  Google Scholar 

  19. Nozawa M, Kawahara Y, Nei M (2007) Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci U S A 104:20421–20426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schuster-Bockler B, Conrad D, Bateman A (2010) Dosage sensitivity shapes the evolution of copy-number varied regions. PLoS One 5:e9474

    Article  PubMed Central  PubMed  Google Scholar 

  21. Felekkis K, Voskarides K, Dweep H et al (2011) Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction. Mol Biol Evol 28:2421–2424

    Article  CAS  PubMed  Google Scholar 

  22. Woodwark C, Bateman A (2011) The characterisation of three types of genes that overlie copy number variable regions. PLoS One 6: e14814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dweep H, Sticht C, Pandey P et al (2011) miRWalk - database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44: 839–837

    Article  CAS  PubMed  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  25. Dweep H, Sticht C, Gretz N (2013) In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Curr Genomics 14:127–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dweep H, Sticht C, Kharkar A et al (2013) Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS One 8:e53780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research Council through Graduiertenkolleg 886 and by the German Federal Ministry of Research and Education through the National Genome Research Network (NGFN-2, Grant no. 01GR 0450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Dweep Ph.D. .

Editor information

Editors and Affiliations

1 Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dweep, H., Gretz, N., Felekkis, K. (2014). A Schematic Workflow for Collecting Information About the Interaction Between Copy Number Variants and MicroRNAs Using Existing Resources. In: Alvarez, M., Nourbakhsh, M. (eds) RNA Map**. Methods in Molecular Biology, vol 1182. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1062-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1062-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1061-8

  • Online ISBN: 978-1-4939-1062-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation