Measurement of Luciferase Rhythms

  • Protocol
  • First Online:
Plant Circadian Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1158))

  • 3719 Accesses

Abstract

Firefly luciferase (LUC) is a sensitive and versatile reporter for the analysis of gene expression. Transgenic plants carrying CLOCK GENE promoter:LUC fusions can be assayed with high temporal resolution. LUC measurement is sensitive, noninvasive, and nondestructive and can be readily automated, greatly facilitating genetic studies. For these reasons, LUC fusion analysis is a mainstay in the study of plant circadian clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fukushima A, Kusano M, Nakamichi N et al (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci U S A 106:7251–7256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Robertson F, Skeffington A, Gardner M et al (2009) Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69:419–427

    Article  CAS  PubMed  Google Scholar 

  3. Graf A, Schlereth A, Stitt M et al (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 107:9458–9463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15:259–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. McClung CR, Gutiérrez RA (2010) Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 20:588–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hotta CT, Gardner MJ, Hubbard KE et al (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349

    Article  CAS  PubMed  Google Scholar 

  7. McClung CR (2011) The genetics of plant clocks. Adv Genet 74:105–138

    Article  CAS  PubMed  Google Scholar 

  8. Covington MF, Maloof JN, Straume M et al (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Article  PubMed Central  PubMed  Google Scholar 

  9. Doherty CJ, Kay SA (2010) Circadian control of global gene expression patterns. Annu Rev Genet 44:419–444

    Article  CAS  PubMed  Google Scholar 

  10. Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide map** of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sanchez SE, Petrillo E, Beckwith EJ et al (2010) A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468:112–116

    Article  CAS  PubMed  Google Scholar 

  12. Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kloppstech K (1985) Diurnal and circadian rhythmicity in the expression of light-induced nuclear messenger RNAs. Planta 165:502–506

    Article  CAS  PubMed  Google Scholar 

  14. Nagy F, Kay SA, Chua N-H (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2:376–382

    Article  CAS  Google Scholar 

  15. Paulsen H, Bogorad L (1988) Diurnal and circadian rhythms in the accumulation and synthesis of mRNA for the light-harvesting chlorophyll a/b-binding protein in tobacco. Plant Physiol 88:1104–1109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tavladoraki P, Kloppstech K, Argyroudi-Akoyunoglou J (1989) Circadian rhythm in the expression of the mRNA coding for the apoprotein of the light-harvesting complex of photosystem II. Plant Physiol 90:665–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fejes E, Pay A, Kanevsky I et al (1990) A 268 bp upstream sequence mediates the circadian clock-regulated transcription of the wheat Cab-1 gene in transgenic plants. Plant Mol Biol 15:921–932

    Article  CAS  PubMed  Google Scholar 

  18. Millar AJ, Kay SA (1991) Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3:541–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pilgrim ML, McClung CR (1993) Differential involvement of the circadian clock in the expression of genes required for Ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol 103:553–564

    CAS  PubMed Central  PubMed  Google Scholar 

  20. de Wet JR, Wood KV, DeLuca M et al (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    PubMed Central  PubMed  Google Scholar 

  21. Ow DW, Wood KV, DeLuca M et al (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234(4778):856–859

    Article  CAS  PubMed  Google Scholar 

  22. Millar AJ, Short SR, Chua N-H et al (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ozawa T, Yoshimura H, Kim SB (2013) Advances in fluorescence and bioluminescence imaging. Anal Chem 85:590–609

    Article  CAS  PubMed  Google Scholar 

  24. Aflalo C (1991) Biologically localized firefly luciferase: a tool to study cellular processes. Int Rev Cytol 130:269–323

    Article  CAS  PubMed  Google Scholar 

  25. Vieira J, Pinto da Silva L, Esteves da Silva JCG (2012) Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J Photochem Photobiol B 117:33–39

    Article  CAS  PubMed  Google Scholar 

  26. Belas R, Mileham A, Cohn D et al (1982) Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 218:791–793

    Article  CAS  PubMed  Google Scholar 

  27. Close D, Xu T, Smartt A et al (2012) The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors 12:732–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Millar AJ, Short SR, Hiratsuka K et al (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10:324–337

    Article  CAS  Google Scholar 

  29. Liu Y, Golden SS, Kondo T et al (1995) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol 177:2080–2086

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kondo T, Strayer CA, Kulkarni RD et al (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A 90:5672–5676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stanewsky R (2007) Analysis of rhythmic gene expression in adult Drosophila using the firefly luciferase reporter gene. Methods Mol Biol 362:131–142

    Article  CAS  PubMed  Google Scholar 

  32. Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38:327–332

    Article  CAS  PubMed  Google Scholar 

  33. Gooch VD, Mehra A, Larrondo LF et al (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7:28–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wilsbacher LD, Yamazaki S, Herzog ED et al (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc Natl Acad Sci U S A 99:489–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Welsh DK, Yoo S-H, Liu AC et al (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Yamaguchi S, Mitsui S, Miyake S et al (2000) The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr Biol 10:873–876

    Article  CAS  PubMed  Google Scholar 

  37. Yamazaki S, Numano R, Abe M et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    Article  CAS  PubMed  Google Scholar 

  38. Murashige TR, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  39. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  40. Plautz JD, Straume M, Stanewsky R et al (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12:204–217

    Article  CAS  PubMed  Google Scholar 

  41. Southern MM, Millar AJ (2005) Circadian genetics in the model higher plant Arabidopsis thaliana. Methods Enzymol 393:23–35

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial MicroRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Xu X, **e Q, McClung CR (2010) Robust circadian rhythms of gene expression in Brassica rapa tissue culture. Plant Physiol 153:841–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dalchau N, Baek SJ, Briggs HM et al (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A 108:5104–5109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci U S A 93:15491–15496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Strayer C, Oyama T, Schultz TF et al (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  CAS  PubMed  Google Scholar 

  47. Michael TP, McClung CR (2002) Phase-specific circadian clock regulatory elements in Arabidopsis thaliana. Plant Physiol 130:627–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gould PD, Diaz P, Hogben C et al (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58:893–901

    Article  CAS  PubMed  Google Scholar 

  49. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Foundation (IOS-0923752 and IOS-1025965) to C.R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Robertson McClung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

McClung, C.R., **e, Q. (2014). Measurement of Luciferase Rhythms. In: Staiger, D. (eds) Plant Circadian Networks. Methods in Molecular Biology, vol 1158. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0700-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0700-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0699-4

  • Online ISBN: 978-1-4939-0700-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation