Abstract

Salicylic acid (SA) is a simple phenolic compound distributed in a wide range of plant taxa. Depending on the plant species, developmental stage, and growth conditions, it can be synthesized from cinnamic acid produced by phenylalanine ammonia-lyase in the cytosol or from isochorismic acid generated by isochorismate synthase in chloroplasts. However, a fully defined SA biosynthetic pathway is still unavailable in plants. Besides its role in regulating various aspects of plant growth and development, SA is a plant immune signal essential for both local defense response and systemic acquired resistance. Significant progress has been made recently in understanding SA-mediated defense signaling networks including identification of SA receptors and elucidation of the crucial role of NPR1 (nonexpressor of pathogenesis-related genes 1) in SA signal execution. Understanding of SA-mediated plant defense has facilitated the development of disease-resistant crops through genetic manipulation of the SA signaling pathway. Although the use of NPR1 and its orthologs in develo** broad-spectrum transgenic disease resistance has been successfully extended to a variety of crop species, commercial application of these transgenic crops has been hampered by ethical concerns. In this regard, cisgenesis may hold the potential for application of bioengineered disease-resistant crops in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alibert G, Ranjeva R (1971) Recharches sur les enzymes catalysant la biosynthese des acides phenoliques chez Quarcus pedunculata (Ehrn): I—formation des series cinnamique et benzoique. FEBS Lett 19:11–14

    PubMed  CAS  Google Scholar 

  • Alibert G, Ranjeva R (1972) Recharches sur les enzyme catalysant la biosyntheses des acid phenoliques chez Quarcus pedunculata (Ehrn): II—localization intercellulaire de la phenylalanine mmonique-lyase, de la cinnamate 4-hydroxylase, et de la “benzoate synthase”. Biochim Biophys Acta 279:282–289

    PubMed  CAS  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behav 4:750–751

    PubMed  PubMed Central  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell and death and disease resistance. Plant Mol Biol 44:429–442

    PubMed  CAS  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    PubMed  CAS  Google Scholar 

  • Bergeault K, Bertsch C, Merdinoglu D, Walter B (2010) Low level of polymorphism in two putative NPR1 homologs in the Vitaceae family. Biol Direct 5:9

    PubMed  PubMed Central  Google Scholar 

  • Bi D, Cheng Y, Li X, Zhang Y (2010) Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. Plant Physiol 153:1771–1779

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C (2009) The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21:3700–3713

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brodersen P, Malinovsky FG, Hematy K, Newman MA, Mundy J (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol 138:1037–1045

    PubMed  CAS  PubMed Central  Google Scholar 

  • Butterbrodt T, Thurow C, Gatz C (2006) Chromatin immunoprecipitation analysis of the tobacco PR-1a- and the truncated CaMV35S promoter reveals differences in salicylic acid-dependent TGA factor binging and histone acetylation. Plant Mol Biol 61:665–674

    PubMed  CAS  Google Scholar 

  • Canet JV, Dobón A, Tornero P (2012) Non-Recognition-of-BTH4, an Arabidopsis Mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24:1–16

    Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    PubMed  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Catinot J, Buchala A, Abou-Mansour E, Métraux JP (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478

    PubMed  CAS  Google Scholar 

  • Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2047

    CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen XK, Zhang JY, Zhang Z, Du XL, Du BB, Qu SC (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089

    PubMed  CAS  Google Scholar 

  • Chern MS, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–520

    PubMed  CAS  Google Scholar 

  • Chinenov Y (2002) A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem Sci 27:115–117

    PubMed  CAS  Google Scholar 

  • Choi SM, Song HR, Han SK, Han M, Kim CY, Park J, Lee YH, Jeon JS, Noh YS, Noh B (2012) HAD19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis. Plant J 71:135–146

    PubMed  CAS  Google Scholar 

  • Chong J, Pierrel MA, Atanassova R, Werck-Reichhart D, Fritig B, Saindrenan P (2001) Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiol 125:318–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Role of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cleland CF (1974) Isolation of flower-inducing and flower-inhibitory factors from aphid honeydew. Plant Physiol 54:899–903

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    PubMed  CAS  PubMed Central  Google Scholar 

  • Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V, Svejstrup JQ, Chariot A (2006) Transcription impairment and cell migration defects in Elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22:521–531

    PubMed  CAS  Google Scholar 

  • Collinge DB, Jørgensen HJL, Lund OS, Lyngkjær MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    PubMed  CAS  Google Scholar 

  • Coquoz JL, Buchala A, Metraux JP (1998) The biosynthesis of salicylic acid in potato plants. Plant Physiol 117:1095–1101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dang FF, Liu JH, Chen CC, Cheng YP, Huang GD, Guan DY, He SL (2012) Overexpression of CaNPR1 enhances resistance to Ralstonia solanacearum infection in tobacco. Plant Sci J 30:494–500

    CAS  Google Scholar 

  • DeFraia CT, Zhang X, Mou Z (2010) Elongator subunits 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant J 64:511–523

    PubMed  CAS  Google Scholar 

  • DeFraia CT, Wang Y, Yao J, Mou Z (2013) Elongator subunits 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biol 13:102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    PubMed  CAS  Google Scholar 

  • Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book 9:e0156

    Google Scholar 

  • Després C, DeLong C, Glaze S, Liu E, Fobert PR (2000) The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279–290

    PubMed  PubMed Central  Google Scholar 

  • Desveaux D, Allard J, Brisson N, Sygusch J (2002) A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat Struct Biol 9:512–517

    PubMed  CAS  Google Scholar 

  • Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque CL, Fobert PR, Dangl JL, Brisson N (2004) A “whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    PubMed  CAS  Google Scholar 

  • Devadas SK, Enyedi A, Raina R (2002) The Arabidopsis hrl1 mutation reveals novel overlap** roles for salicylic acid, jasmonic acid and ethylene signaling in cell death and defence against pathogens. Plant J 30:467–480

    PubMed  CAS  Google Scholar 

  • Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Drummond EP, Ausubel FM (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    PubMed  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    PubMed  CAS  Google Scholar 

  • Du H, Klessig DF (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113:1319–1327

    PubMed  CAS  PubMed Central  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • Durrant WE, Wang S, Dong X (2007) Arabidopsis SNI1 and RAD51D regulate both gene transcription and DNA recombination during the defense response. Proc Natl Acad Sci U S A 104:4223–4227

    PubMed  CAS  PubMed Central  Google Scholar 

  • El Oirdi M, El Rahman TA, Rigano L, El Hadrami A, Rodriguez MC, Daayf F, Vojnov A, Bouarab K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421

    PubMed  PubMed Central  Google Scholar 

  • El-Basyouni SZ, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    CAS  Google Scholar 

  • Ellis BE, Amrhein N (1971) NIH-shift during aromatic orthodihydroxylation in higher plants. Phytochemistry 10:3069

    CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive response reaction to tobacco mosaic-virus. Proc Natl Acad Sci U S A 89:2480–2484

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    PubMed  CAS  PubMed Central  Google Scholar 

  • Felton GW, Korth KL, Bi JL, Wesley SV, Huhman DV, Mathews MC, Murphy JB, Lamb C, Dixon RA (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol 9:317–320

    PubMed  CAS  Google Scholar 

  • Feng JX, Cao L, Li J, Duan CJ, Luo XM, Le N, Wei HH, Liang SJ, Chu CC, Pan QH, Tang JL (2011) Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur J Plant Pathol 131:221–235

    CAS  Google Scholar 

  • Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151

    PubMed  CAS  Google Scholar 

  • Ford KA, Casida JE, Chandran D, Gulevich AG, Okrent RA, Durkin KA, Sarpong R, Bunnelle EM, Wildermuth MC (2010) Neonicotinoid insecticides induced salicylate-associated plant defense responses. Proc Natl Acad Sci U S A 107:17527–17532

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foster S, Tyler VE (1999) Tyler’s honest herbal, 4th edn. Haworth Herbal, Binghamton

    Google Scholar 

  • Fragnière C, Serrano M, Abou-Mansour E, Métraux JP, L’Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585:1847–1852

    PubMed  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact 14:1114–1124

    PubMed  CAS  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    PubMed  CAS  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gabriace B, Werck-Reichhart D, Teutsch H, Durst F (1991) Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydrozylase. Arch Biochem Biophys 288:302–309

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CAS  Google Scholar 

  • Garcion C, Métraux JP (2006) Salicylic acid. In: Hedden P, Thomas SG (eds) Plant hormone signaling. Blackwell, Oxford

    Google Scholar 

  • Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP (2008) Characterization and biological function of the Isochorismate Synthase2 gene of Arabidopsis. Plant Physiol 147:1279–1287

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gestetner B, Conn EE (1974) The 2-hydroxylation of transcimannic acid by chloroplasts from Melilotus alba Desr. Arch Biochem Biophys 163:617–624

    PubMed  CAS  Google Scholar 

  • Glatt S, Séraphin B, Müller CW (2012) Elongator: transcriptional or translational regulator? Transcription 3:273–276

    PubMed  PubMed Central  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorop M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    PubMed  CAS  PubMed Central  Google Scholar 

  • Griesebach H, Vollmer KO (1963) Untersuchungen zur biosyntheses des salicylsauremethylesters in Gaultheria procumbens L. Z Naturforsch B 18:753

    Google Scholar 

  • Gurr SJ, Rushton PJ (2005a) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290

    PubMed  CAS  Google Scholar 

  • Gurr SJ, Rushton PJ (2005b) Engineering plants with increased disease resistance: what are we going to express it? Trends Biotechnol 23:275–282

    PubMed  CAS  Google Scholar 

  • Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS (2006) The structure of Mbtl from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 188:6081–6091

    PubMed  CAS  PubMed Central  Google Scholar 

  • Harrower J, Wildermuth MC (2011) Exogenous salicylic acid treatment of Arabidopsis thaliana Col-0. NCBI Gene Expression Omnibus Accession No: GSE33402

    Google Scholar 

  • He Z, Stigers Lavoie KD, Bartlett PA, Toney MD (2004) Conservation of mechanism in three chorismate-utilizing enzymes. J Am Chem Soc 126:2378–2385

    PubMed  CAS  Google Scholar 

  • Heidel AJ, Dong X (2006) Fitness benefits of systemic acquired resistance during Hyaloperonospora parasitica infection in Arabidopsis thaliana. Genetics 173:1621–1628

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hermann M, Maier F, Masroor A, Hirth S, Pfitzner AJP, Pfitzner UM (2013) The Arabidopsis NIMIN proteins affect NPR1 differentially. Front Plant Sci 4:88

    PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ibdah M, Chen YT, Wilkerson CG, Pichersky E (2009) An aldehyde oxidase in develo** seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol 150:416–423

    PubMed  CAS  PubMed Central  Google Scholar 

  • Janda T, Horvath E, Szalai C, Palide E (2007) Role of salicylic acid in the induction of abiotic stress tolerance. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht

    Google Scholar 

  • Jarvis AP, Schaaf O, Oldham NJ (2000) 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not. Planta 212:119–126

    PubMed  CAS  Google Scholar 

  • Johnson C, Boden E, Arias J (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15:1846–1858

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 98:9448–9453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaltdorf M, Naseem M (2013) How many salicylic acid receptors does a plant cell need? Sci Signal 6(279):jc3

    PubMed  Google Scholar 

  • Kerbarh O, Ciulli A, Howard NI, Abell C (2005) Salicylate biosynthesis: overexpression, purification and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J Bacteriol 187:5061–5066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    PubMed  CAS  PubMed Central  Google Scholar 

  • Killian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klämbt HD (1962) Conversion in plants of benzoic acid to salicylic acid and its β-D-glucoside. Nature 196:491

    Google Scholar 

  • Kolappan S, Zwahlen J, Zhou R, Truglio JJ, Tonge PJ, Kisker C (2007) Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: implications for an enzyme family. Biochemistry 46:946–953

    PubMed  CAS  Google Scholar 

  • Koornneef A, Rindermann K, Gatz C, Pieterse CMJ (2008) Histone modification do not play a major role in salicylate mediated suppression of jasmonate-induced PDF1.2 gene expression. Commun Integr Biol 1:143–145

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci U S A 100:16101–16106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar V, Joshi SG, Bell AA, Rathore KS (2013) Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene. Transgenic Res 22:359–368

    PubMed  Google Scholar 

  • Le Henanff G, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417

    PubMed  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR1 gene expression in Arabidopsis. Plant J 16:223–233

    PubMed  CAS  Google Scholar 

  • Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Google Scholar 

  • Lee HI, León J, Raskin I (1995) Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci U S A 92:4076–4079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Léon J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103:323–328

    PubMed  PubMed Central  Google Scholar 

  • León J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci U S A 92:10413–10417

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang Y, Clarke JD, Li Y, Dong X (1999) Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98:329–339

    PubMed  CAS  Google Scholar 

  • Li X, Clarke JD, Zhang Y, Dong X (2001) Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 14:1131–1139

    PubMed  CAS  Google Scholar 

  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS, Black L, Green SK, Wang JF, Cheng CP (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:567–581

    PubMed  CAS  Google Scholar 

  • Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318

    PubMed  CAS  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123–129

    PubMed  CAS  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654

    CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    PubMed  CAS  Google Scholar 

  • Malamy J, Hennig J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4:359–366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malnoy M, ** Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Mol Plant Microbe Interact 19:123–129

    Google Scholar 

  • Manthe B, Schulz M, Schnabl H (1992) Effects of salicylic acid on growth and stomatal movement of Vicia faba L.: evidence for salicylic acid metabolization. J Chem Ecol 18:1525–1539

    PubMed  CAS  Google Scholar 

  • Martínez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25:67–77

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–212

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    PubMed  CAS  PubMed Central  Google Scholar 

  • Métraux JP, Signer H, Ryals JA, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    PubMed  Google Scholar 

  • Meur G, Budatha M, Srinivasan T, Rajesh Kumar KR, Dutta Gupta A, Kirti PB (2008) Constitutive expression of Arabidopsis NPR1 confers enhanced resistance to the early instars of Spodoptera litura in transgenic tobacco. Physiol Plant 133:765–775

    PubMed  CAS  Google Scholar 

  • Meuwly P, Mölders W, Buchala A, Métraux JP (1995) Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiol 109:1107–1114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23:2809–2820

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Ukness S (1998) Induced resistance response in maize. Mol Plant Microbe Interact 11:643–658

    PubMed  CAS  Google Scholar 

  • Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    PubMed  CAS  Google Scholar 

  • Mosher RA, Durrant WE, Wang D, Song J, Dong X (2006) A comprehensive structure-function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18:1750–1765

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    PubMed  CAS  Google Scholar 

  • Navarre DA, Mayo D (2004) Differential characteristics of salicylic acid-mediated signaling in potato. Physiol Mol Plant Pathol 64:179–188

    CAS  Google Scholar 

  • Nawrath C, Métraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–1404

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid–dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inze D, Van Lijsebettens M (2005) The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci U S A 102:7754–7759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishimura MT, Dangl JL (2010) Arabidopsis and the plant immune system. Plant J 61:1053–1066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW (2007) The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol 144:1144–1156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nugent RL, Johnsson A, Fleharty B, Gogol M, Xue-Franzén Y, Seidel C, Wright AP, Forsburg SL (2010) Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation. BMC Genomics 11:59

    PubMed  PubMed Central  Google Scholar 

  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A, Kanna M, Ioki M, Kamada H, Saji H (2005) Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46:1062–1072

    PubMed  CAS  Google Scholar 

  • Pallas JA, Paiva NL, Lamb C, Dixon RA (1996) Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J 10:281–293

    CAS  Google Scholar 

  • Pan Q, Zhan J, Liu H, Zhang J, Chen J, Wen P, Huang W (2006) Salicylic acid synthesis by benzoic acid 2-hydroxylase participates in the development of thermo tolerance in pea plants. Plant Sci 171:226–233

    CAS  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    PubMed  CAS  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Rathore KS (2010a) Expression of Arabidopsis NPR1 in transgenic cotton confers resistance to non-defoliating isolates of Verticillium dahliae but not the defoliating isolate. J Phytopathol 158:822–825

    CAS  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010b) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    PubMed  CAS  Google Scholar 

  • Parsons JF, Shi KM, Ladner JE (2008) Structure of isochorismate synthase in complex with magnesium. Acta Crystallogr D64:607–610

    Google Scholar 

  • Pasquer F, Isidore E, Zarn J, Keller B (2005) Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol Biol 57:693–707

    PubMed  CAS  Google Scholar 

  • Pellegrini L, Rohfritsch O, Fritig B, Legrand M (1994) Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol 106:877–886

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pelludat C, Brem D, Heesemann J (2003) Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol 185:5648–5653

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pierpoint WS (1994) Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv Bot Res 20:163–235

    CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    PubMed  CAS  Google Scholar 

  • Postel S, Küfner I, Beuter C, Mazzotta S, Schwedt A, Borlotti A, Halter T, Kemmerling B, Nürnberger T (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol 89:169–174

    PubMed  CAS  Google Scholar 

  • Potlakayala SD, Reed DW, Covello PS, Fobert PR (2007) Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97:794–802

    PubMed  CAS  Google Scholar 

  • Poulsen C, Verpoorte R (1991) Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 30:377–386

    CAS  Google Scholar 

  • Pridham JB (1965) Low molecular weight phenols in higher plants. Annu Rev Plant Physiol 6:13–36

    Google Scholar 

  • Priya B, Somasekhar N, Prasad JS, Kirti PB (2011) Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita. BMC Res Notes 4:231

    PubMed  PubMed Central  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant Microbe Interact 21:1215–1231

    PubMed  CAS  Google Scholar 

  • Raes J, Rhode A, Christensen JH, van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raffaele S, Rivas S, Roby D (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 580:3498–3504

    PubMed  CAS  Google Scholar 

  • Rajou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone-induced cell death. Planta 213:682–690

    PubMed  CAS  Google Scholar 

  • Rao MV, Lee HI, Davis KR (2002) Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant J 32:447–456

    PubMed  CAS  Google Scholar 

  • Raridan GJ, Delaney TP (2002) Role of salicylic acid and NIM1/NPR1 in race-specific resistance in Arabidopsis. Genetics 29:439–451

    Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol 43:438–463

    Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJD (1987) Salicylic acid: a natural induced of heat production in Arum lilies. Science 237:1601–1602

    PubMed  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJD (1990) Salicylic acid levels in thermogenic and nonthermogenic plants. Ann Bot 66:369–373

    CAS  Google Scholar 

  • Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT (1999) The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defense, and cell growth. Plant Cell 11:1695–1708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ribnicky DM, Shulaev V, Raskin I (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118:565–572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rochon A, Boyle P, Wignes T, Fobert PR, Despré C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18:3670–3685

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn G, De Rycke R, Kushnir S, van Doorsselaere J, Joseleau JP, Vuylsteke M, van Driessche G, van Beeumen J, Messens E, Boerjan W (2004) Molecular phenoty** of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    PubMed  CAS  PubMed Central  Google Scholar 

  • Russel DW, Conn EE (1967) The cinnamic acid 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256–258

    Google Scholar 

  • Ruuhola T, Julkunen-Tiitto R (2003) Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra. J Chem Ecol 29:1565–1588

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salomon D, Sessa G (2012) Biotechnological strategies for engineering plants with durable resistance to fungal and bacterial pathogens. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier, Waltham

    Google Scholar 

  • Sandhu D, Tasma IM, Frasch R, Bhattacharyya MK (2009) Systemic acquired resistance in soybean is regulated by two proteins, orthologous to Arabidopsis NPR1. BMC Plant Biol 9:105

    PubMed  PubMed Central  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    CAS  Google Scholar 

  • Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749

    CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structure genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228

    PubMed  CAS  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    PubMed  CAS  Google Scholar 

  • Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In: Hooykaas PPJ, Hall MA, Libbega KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam

    Google Scholar 

  • Shah J, Tsui F, Klessig DF (1997) Characterization of a salicylic acid-insensitive mutant (sail1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact 10:69–78

    PubMed  CAS  Google Scholar 

  • Shah J, Kachroo P, Klessig DF (1999) The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11:191–206

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shah J, Kachroo P, Nandi A, Klessig DF (2001) A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J 25:563–574

    PubMed  CAS  Google Scholar 

  • Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ (2010) Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10:248

    PubMed  PubMed Central  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis toll interleukiin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metraux JP, Raskin I (1995) Salicylic acid in rice: biosynthesis, conjugation and possible role. Plant Physiol 108:633–639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, Del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Song J, Durrant WE, Wang S, Yan S, Tan EH, Dong X (2011) DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe 9:115–124

    PubMed  CAS  Google Scholar 

  • Spartz A, Gray WM (2008) Plant hormone receptors: new perceptions. Genes Dev 22:2139–2148

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872

    PubMed  CAS  PubMed Central  Google Scholar 

  • Srinivasan T, Kumar KRR, Meur G, Kirti PB (2009) Heterologous expression of Arabidopsis NPR1 (AtNPR1) enhances oxidative stress tolerance in transgenic tobacco plants. Biotechnol Lett 31:1343–1351

    PubMed  CAS  Google Scholar 

  • Stacey G, McAlvin CB, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicas and Medicago truncatula. Plant Physiol 141:1473–1481

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    PubMed  CAS  Google Scholar 

  • Strawn MA, Marr SK, Inoule K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    PubMed  CAS  Google Scholar 

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19:769–772

    PubMed  CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    PubMed  CAS  Google Scholar 

  • Takahashi H, Miller J, Nozaki Y, Sukamoto, Takeda M, Shah J, Hase S, Ikegami M, Ehara Y, Dinesh-Kumar SP (2002) RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J 32:655–667

    PubMed  CAS  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. Tomato DC3000. Mol Plant Microbe Interact 20:955–965

    PubMed  CAS  Google Scholar 

  • van den Burg HA, Takken FLW (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294

    PubMed  Google Scholar 

  • van Tegelen LJP, Moreno PRH, Croes AF, Verpoorte R, Wullems GJ (1999) Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiol 119:705–712

    PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Lu H, Rate DN, Greenberg JT (2001) A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J 28:209–216

    PubMed  CAS  Google Scholar 

  • Verberne MC, Budi Muljono RA, Verpoorte R (1999) Salicylic acid biosynthesis. In: Hall PPJ, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Verberne MC, Verpoorte R, Bol JF, Mercado-Blanco J, Linthorst HJM (2000) Overproduction of salicylic acid in plants by bacterial transgene enhances pathogen resistance. Nat Biotechnol 18:779–783

    PubMed  CAS  Google Scholar 

  • Versées W, De Groeve S, van Lijsebettens M (2010) Elongator, a conserved multitasking complex? Mol Microbiol 76:1065–1069

    PubMed  Google Scholar 

  • Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Google Scholar 

  • Vijayan S, Kirti P (2012) Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen Rhizoctonia solani. Transgenic Res 21:193–200

    PubMed  CAS  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    PubMed  CAS  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    PubMed  CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    PubMed  CAS  Google Scholar 

  • Wang D, Amornisripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Durrant WE, Song J, Spivey NW, Dong X (2010) Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses. Proc Natl Acad Sci U S A 107:22716–22721

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z (2013) The Arabidopsis Elongator complex subunit2 epigenetically regulates plant immune responses. Plant Cell 25:762–776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wasternack C, Atzorn R, Jarosch B, Kogel KH (1994) Induction of a thionin, the jasmonate-induced 6 kDa protein of barley by 2,6-dichloroisonicotinic acid. J Phytopathology 140:280–284

    CAS  Google Scholar 

  • Wathugala DL, Hemsley PA, Moffat CS, Cremelie P, Knight MR, Knight H (2012) The Mediator subunit SFR6/MED16 controls defense gene expression mediated by salicylic acid and jasmonate responsive pathways. New Phytol 195:217–230

    PubMed  CAS  Google Scholar 

  • Way HM, Kazan K, Mitter N, Goulter KG, Birch RG, Manners JM (2002) Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiol Mol Plant Pathol 60:275–282

    CAS  Google Scholar 

  • Weigel RR, Bäuscher C, Pfitzner AJP, Pritzner UM (2001) NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol 46:143–160

    PubMed  CAS  Google Scholar 

  • Weigel RR, Pfitzner UM, Gatz C (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell 17:1279–1291

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weissman G (1991) Aspirin. Sci Am 264:84–90

    Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci U S A 99:3517–3522

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    PubMed  CAS  Google Scholar 

  • Xu D, Huang W, Li Y, Wang H, Huang H, Cui X (2012) Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. Plant J 69:792–808

    PubMed  CAS  Google Scholar 

  • Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yalpani N, León J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan Y, Zhong S, Zhu Z, Lou Y, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals the OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324

    PubMed  CAS  Google Scholar 

  • Zenk MH, Muller G (1964) Biosynthesis von p-hydroxybenzoesaure und anderer benzoesauren in hoheren Pflanzen. Z Naturforsch B 19:398

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li X (2005) A putative nucleoporin 96, is required for both basal defense and constitutive resistance responses mediated by snc1. Plant Cell 17:1306–1316

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Fan W, Kinkema M, Li X, Dong X (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96:6523–6528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factor TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbović V, Triplett EW, Mou Z (2010a) Overexpression of the Arabidopsis NPR1 gene in citrus increase resistance to citrus canker. Eur J Plant Pathol 128:91–100

    CAS  Google Scholar 

  • Zhang Y, Yang Y, Fang B, Gannon P, Ding P, Li X, Zhang Y (2010b) Arabidopsis snc2-1D activates receptor like protein-mediated immunity transduced through WRKY70. Plant Cell 22:3153–3163

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang JY, Qiao YS, Lv D, Gao ZH, Qu SC, Zhang Z (2012a) Malus hupehensis NPR1 induces pathogenesis-related protein gene expression in transgenic tobacco. Plant Biol (Stuttg) 14:46–56

    CAS  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Su Y, Mou Z (2012b) The Arabidopsis Mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–4309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Yao J, Zhang Y, Sun Y, Mou Z (2013a) The Arabidopsis Mediator complex subunits MED14/SWP and MED16/SFR16/IEN1 differentially regulate defense gene expression in plant immune responses. Plant J 75:484–497

    PubMed  CAS  Google Scholar 

  • Zhang Y, Ni X, Ma H, Qiu W (2013b) Characterization of NPR1 genes from Norton and Cabernet sauvignon grapevine. J Integr Agric 12:1152–1161

    Google Scholar 

  • Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13:191–202

    PubMed  CAS  Google Scholar 

  • Ziebart KT, Toney MD (2010) Nucleophile specificity in anthranilate synthase, amidodeoxychorismate synthase, and salicylate synthase. Biochemistry 49:2851–2859

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglin Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

An, C., Mou, Z. (2014). Salicylic Acid and Defense Responses in Plants. In: Tran, LS., Pal, S. (eds) Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0491-4_7

Download citation

Publish with us

Policies and ethics

Navigation