Arenaviruses: Lassa Fever, Lujo Hemorrhagic Fever, Lymphocytic Choriomeningitis, and the South American Hemorrhagic Fevers

  • Chapter
  • First Online:
Viral Infections of Humans

Abstract

Arenaviruses are single-stranded RNA viruses that are grouped taxonomically into Old World/lymphocytic choriomeningitis (i.e., Africa, Europe, Asia, and Oceania) and New World/Tacaribe (i.e., the Americas) complexes. Over 40 arenaviruses have been identified to date, although a minority are recognized human pathogens. Arenaviruses are maintained in nature by chronic infection in rodents of the Muridae and Cricetidae families. There is a tight reservoir rodent–virus species pairing that limits the endemic area of each arenavirus to the geographic distribution of its specific reservoir. The geographic distribution of infected rodents is usually considerably restricted relative to the entire range of the species. Since most rodent reservoirs inhabit rural sylvatic niches, primary arenavirus infection in humans occurs almost exclusively in rural and often remote settings. The incidence of human infection may vary considerably with variations in rodent population densities that may relate to climatic and seasonal weather changes and human-induced habitat perturbation, especially agricultural expansion converting forest to cultivated fields. Infected rodents shed virus in urine, feces, and saliva and primary human infection occurs through contact with these biological substances. Secondary human-to-human transmission may occur, especially with viruses of the Old World complex, through contact with bodily fluids, most often to those caring for sick persons at home or in healthcare centers. However, secondary attack rates are generally low as long as strict barrier nursing practices are observed. Large outbreaks are almost always fueled by nosocomial transmission, usually in resource-poor regions where barrier nursing practices may not be maintained. Arenaviruses classically cause two distinct syndromes in humans—central nervous system disease (lymphocytic choriomeningitis and Dandenong viruses) and hemorrhagic fever (Lassa and Lujo viruses in Africa and Junín, Machupo, Guanarito, Sabiá, and Chapare viruses in South America)—although many arenavirus infections may be asymptomatic or result in a nonspecific febrile illness. Treatment options include the antiviral drug ribavirin and convalescent immune plasma. Some arenaviruses are considered “Select Agents” that could possibly be used as bioweapons. The nonspecific clinical presentation and general lack of readily available laboratory testing for arenavirus infection pose significant challenges to diagnosis. The remote and geographically restricted endemic areas, often in resource-poor countries, apparent rarity of most arenaviral infections in humans, and challenges to diagnosis make surveillance and reliable estimates of infection and disease difficult. Control methods generally involve integrated pest management strategies to limit human contact with rodent excreta and the use of appropriate personal protective materials for those at occupational risk through patient care, laboratory exposure, or fieldwork. During outbreaks, intensive rodent trap** in villages, as well as aggressive case identification, patient isolation, and contact tracing may all be needed. Vaccines are generally in the development stages. Further research and public health advances are needed to understand the complex epizoologic, epidemiologic, and ecologic interplay of arenaviruses that result in human disease, with the ultimate goal being the capacity to predict the emergence of these viruses and thus take steps to prevent human infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 287.83
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murphy FA, Whitfield SG. Morphology and morphogenesis of arenaviruses. Bull World Health Organ. 1975;52:409–19.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Bond NG, Moses LM, Peterson AT, Mills JN, Bausch DG. Environmental aspects of the viral hemorrhagic fevers. In: Friis R, editor. Praeger handbook of environmental health. Santa Barbara: Praeger Publishing Company; 2012. p. 133–61.

    Google Scholar 

  3. Paweska JT, Sewlall NH, Ksiazek TG, et al. Nosocomial outbreak of novel arenavirus infection, southern Africa. Emerg Infect Dis. 2009;15:1598–602.

    PubMed  PubMed Central  Google Scholar 

  4. de Bellocq JG, Borremans B, Katakweba A, et al. Sympatric occurrence of 3 arenaviruses, Tanzania. Emerg Infect Dis. 2010;16:692–5.

    PubMed  Google Scholar 

  5. Gunther S, Hoofd G, Charrel R, et al. Mopeia virus-related arenavirus in natal multimammate mice, Morogoro, Tanzania. Emerg Infect Dis. 2009;15:2008–12.

    PubMed  PubMed Central  Google Scholar 

  6. Palacios G, Savji N, Hui J, et al. Genomic and phylogenetic characterization of Merino Walk virus, a novel arenavirus isolated in South Africa. J Gen Virol. 2010;91:1315–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Wulff H, McIntosh BM, Hamner DB, Johnson KM. Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bull World Health Organ. 1977;55:441–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Digoutte JP, Gagnard VJ, Bres P, Pajot FX. Nyando virus infection in man. Bull Soc Pathol Exot Filiales. 1972;65:751–8.

    PubMed  CAS  Google Scholar 

  9. Gonzalez JP, McCormick JB, Saluzzo JF, Georges AJ. African viral haemorrhagic fevers. Studies in the Central African Republic. Ent med et Parasitol. 1983;21:119–30.

    Google Scholar 

  10. Kiley MP, Swanepoel R, Mitchell SW, Lange JV, Gonzalez JP, McCormick JB. Serological and biological evidence that Lassa-complex arenaviruses are widely distributed in Africa. Med Microbiol Immunol (Berl). 1986;175:161–3.

    CAS  Google Scholar 

  11. Johnson KM, Taylor P, Elliott LH, Tomori O. Recovery of a Lassa-related arenavirus in Zimbabwe. Am J Trop Med Hyg. 1981;30:1291–3.

    PubMed  CAS  Google Scholar 

  12. Mills JN. Biodiversity loss and emerging infectious disease: an example from the rodent-borne hemorrhagic fevers. Biodiversity. 2006;7:9–17.

    Google Scholar 

  13. Johnson KM, Halstead SB, Cohen SN. Hemorrhagic fevers of Southeast Asia and South America: a comparative appraisal. Prog Med Virol. 1967;9:105–58.

    PubMed  CAS  Google Scholar 

  14. de Manzione N, Salas RA, Paredes H, et al. Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin Infect Dis. 1998;26:308–13.

    PubMed  Google Scholar 

  15. Bausch DG, Ksiazek TG. Viral hemorrhagic fevers including hantavirus pulmonary syndrome in the Americas. Clin Lab Med. 2002;22:981–1020, viii.

    PubMed  Google Scholar 

  16. Peters CJ, Zaki SR. Overview of viral hemorrhagic fevers. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens, and practice. Philadelphia: Churchill Livingstone; 2006. p. 726–33.

    Google Scholar 

  17. Enria DA, Mills JN, Shieh W, Bausch D, Peters CJ. Arenavirus infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens, and practice. 3rd ed. Philadelphia: Elsevier Inc; 2011. p. 449–61.

    Google Scholar 

  18. Alibek K, Handelman S. Biohazard: the largest covert biological weapons program in the world. 1st ed. New York: Random House; 1999.

    Google Scholar 

  19. Bausch DG, Peters CJ. The viral hemorrhagic fevers. In: Lutwick LI, Lutwick SM, editors. Beyond anthrax: the weaponization of infectious diseases. New York: Humana Press; 2009. p. 107–44.

    Google Scholar 

  20. Gunther S, Lenz O. Lassa virus. Crit Rev Clin Lab Sci. 2004;41:339–90.

    PubMed  Google Scholar 

  21. Buchmeier MJ, de la Torre JC, Peters CJ. Arenaviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields’ virology. 5th ed. Philadelphia: Lippincott, Williams, and Wilkins; 2006.

    Google Scholar 

  22. Weaver SC, Salas RA, de Manzione N, et al. Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology. 2000;266:189–95.

    PubMed  CAS  Google Scholar 

  23. Fulhorst CF, Charrel RN, Weaver SC, et al. Geographic distribution and genetic diversity of Whitewater Arroyo virus in the southwestern United States. Emerg Infect Dis. 2001;7:403–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Ehichioya DU, Hass M, Becker-Ziaja B, et al. Current molecular epidemiology of Lassa virus in Nigeria. J Clin Microbiol. 2011;49:1157–61.

    PubMed  PubMed Central  Google Scholar 

  25. Bowen MD, Rollin PE, Ksiazek TG, et al. Genetic diversity among Lassa virus strains. J Virol. 2000;74:6992–7004.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Vieth S, Torda AE, Asper M, Schmitz H, Gunther S. Sequence analysis of L RNA of Lassa virus. Virology. 2004;318:153–68.

    PubMed  CAS  Google Scholar 

  27. Jahrling PB, Frame JD, Smith SB, Monson MH. Endemic Lassa fever in Liberia. III. Characterization of Lassa virus isolates. Trans R Soc Trop Med Hyg. 1985;79:374–9.

    PubMed  CAS  Google Scholar 

  28. Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Oldstone MB. Genetic map** of lymphocytic choriomeningitis virus pathogenicity: virulence in guinea pigs is associated with the L RNA segment. J Virol. 1985;55:704–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Milazzo L, Cesari M. Early viral kinetics: a novel guide for optimal dosing frequency of pegylated interferon-alpha-2a in HIV/HCV-coinfected patients. Expert Rev Anti Infect Ther. 2011;9:859–62.

    PubMed  CAS  Google Scholar 

  30. Cao W, Henry MD, Borrow P, et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282:2079–81.

    PubMed  CAS  Google Scholar 

  31. Choe H, Jemielity S, Abraham J, Radoshitzky SR, Farzan M. Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Curr Opin Microbiol. 2011;14:476–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Rojek JM, Kunz S. Cell entry by human pathogenic arenaviruses. Cell Microbiol. 2008;10:828–35.

    PubMed  CAS  Google Scholar 

  33. Armstrong C, Wallace J, Ross L. Lymphocytic choriomeningitis: gray mice, Mus musculus, a reservoir for the infection. Public Health Rep. 1940;55:1222–9.

    Google Scholar 

  34. Oldstone MB. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr Top Microbiol Immunol. 2002;263:83–117.

    PubMed  CAS  Google Scholar 

  35. Gregg MB. Recent outbreaks of lymphocytic choriomeningitis in the United States of America. Bull World Health Organ. 1975;52:549–53.

    PubMed  CAS  Google Scholar 

  36. Ackerman R. Epidemiologic aspects of lymphocytic choriomeningitis in man. In: Grube FL, editor. Lymphocytic choriomeningitis virus and other arenaviruses. New York: Springer; 1973. p. 233–7.

    Google Scholar 

  37. Brouqui P, Rousseau MC, Saron MF, Bourgeade A. Meningitis due to lymphocytic choriomeningitis virus: four cases in France. Clin Infect Dis. 1995;20:1082–3.

    PubMed  CAS  Google Scholar 

  38. Peters CJ. Viral Infections of vertebrates, virus infections of rodents and lagomorphs. In: Horzinek MCO, A.D.M.E., editors. Arenaviruses. Amsterdam: Elsevier; 1994. p. 321–41.

    Google Scholar 

  39. Smith AL, Paturzo FX, Gardner EP, Morgenstern S, Cameron G, Wadley H. Two epizootics of lymphocytic choriomeningitis virus occurring in laboratory mice despite intensive monitoring programs. Can J Comp Med. 1984;48:335–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Hotchin J. The contamination of laboratory animals with lymphocytic choriomeningitis virus. Am J Pathol. 1971;64:747–69.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Amman BR, Pavlin BI, Albarino CG, et al. Pet rodents and fatal lymphocytic choriomeningitis in transplant patients. Emerg Infect Dis. 2007;13:719–25.

    PubMed  PubMed Central  Google Scholar 

  42. Childs JE, Peters CJ. Ecology and epidemiology of arenaviruses and their hosts. In: Salvato MS, editor. The arenaviridae. New York: Plenum Press; 1993. p. 331–84.

    Google Scholar 

  43. Childs JE, Glass GE, Ksiazek TG, Rossi CA, Oro JG, Leduc JW. Human-rodent contact and infection with lymphocytic choriomeningitis and Seoul viruses in an inner-city population. Am J Trop Med Hyg. 1991;44:117–21.

    PubMed  CAS  Google Scholar 

  44. Gardner MB, Henderson BE, Estes JD, Menck H, Parker JC, Huebner RJ. Unusually high incidence of spontaneous lymphomas in wild house mice. J Natl Cancer Inst. 1973;50:1571–9.

    PubMed  CAS  Google Scholar 

  45. Monath TP, Newhouse VF, Kemp GE, Setzer HW, Cacciapuoti A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science. 1974;185:263–5.

    PubMed  CAS  Google Scholar 

  46. Bowen MD, Peters CJ, Nichol ST. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol. 1997;8:301–16.

    PubMed  CAS  Google Scholar 

  47. Wulff H, Fabiyi A, Monath TP. Recent isolations of Lassa virus from Nigerian rodents. Bull World Health Organ. 1975;52:609–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis. 1987;155:437–44.

    PubMed  CAS  Google Scholar 

  49. Shi CX, Graham FL, Hitt MM. A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J Gene Med. 2006;8:442–51.

    PubMed  CAS  Google Scholar 

  50. Safronetz D, Lopez JE, Sogoba N, et al. Detection of Lassa virus, Mali. Emerg Infect Dis. 2010;16:1123–6.

    PubMed  PubMed Central  Google Scholar 

  51. Lecompte E, Fichet-Calvet E, Daffis S, et al. Mastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis. 2006;12:1971–4.

    PubMed  PubMed Central  Google Scholar 

  52. Isaacson M. The ecology of Paromys (Mastomys) natalensis in southern Africa. Bull World Health Organ. 1975;52:629–36.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Barnett AA, Read N, Scurlock J, Low C, Norris H, Shapley R. Ecology of rodent communities in agricultural habitats in eastern Sierra Leone: cocoa groves as forest refugia. Trop Ecol. 2000;41:127–42.

    Google Scholar 

  54. Fichet-Calvet E, Lecompte E, Koivogui L, et al. Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 2007;7:119–28.

    PubMed  Google Scholar 

  55. Keenlyside RA, McCormack JB, Webb PA, Smith E, Elliott L, Johnson KM. Case-control study of Mastomys natalensis and humans in Lassa virus-infected households in Sierra Leone. Am J Trop Med Hyg. 1983;32:829–37.

    PubMed  CAS  Google Scholar 

  56. Demby AH, Inapogui A, Kargbo K, et al. Lassa fever in Guinea: II. Distribution and prevalence of Lassa virus infection in small mammals. Vector Borne Zoonotic Dis. 2001;1:283–97.

    PubMed  CAS  Google Scholar 

  57. Bausch DG, Demby AH, Coulibaly M, et al. Lassa fever in Guinea: I. Epidemiology of human disease and clinical observations. Vector Borne Zoonotic Dis. 2001;1:269–81.

    PubMed  CAS  Google Scholar 

  58. McCune S, Arriola CS, Gilman RH, et al. Interspecies interactions and potential Influenza A virus risk in small swine farms in Peru. BMC Infect Dis. 2012;12:58.

    PubMed  PubMed Central  Google Scholar 

  59. Peters CJ, Jahrling PB, Liu CT, Kenyon RH, McKee Jr KT, Barrera Oro JG. Experimental studies of arenaviral hemorrhagic fevers. Curr Top Microbiol Immunol. 1987;134:5–68.

    PubMed  CAS  Google Scholar 

  60. Walker DH, Wulff H, Lange JV, Murphy FA. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull World Health Organ. 1975;52:523–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Suzuki S, Hotchin J. Initiation of persistent lymphocytic choriomeningitis infection in adult mice. J Infect Dis. 1971;123:603–10.

    PubMed  CAS  Google Scholar 

  62. Demartini JC, Green DE, Monath TP. Lassa virus infection in Mastomys natalensis in Sierra Leone. Bull World Health Organ. 1975;52:651–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Redford KH, Eisenberg JF. Mammals of the neotropics: the southern cone. Chicago: The University of Chicago Press; 1992.

    Google Scholar 

  64. Mills JN, Ellis BA, McKee KTJ, et al. Junin virus activity in rodents from endemic and nonendemic loci in central Argentina. Am J Trop Med Hyg. 1991;44:589–97.

    PubMed  CAS  Google Scholar 

  65. Ellis BA, Mills JN, Childs JE, et al. Structure and floristics of habitats associated with five rodent species in an agroecosystem in central Argentina. J Zool. 1997;243(3):437–60.

    Google Scholar 

  66. Mills JN, Ellis BA, McKee KT, et al. A longitudinal study of Junin virus activity in the rodent reservoir of Argentine hemorrhagic fever. Am J Trop Med Hyg. 1992;47:749–63.

    PubMed  CAS  Google Scholar 

  67. Mills JN, Ellis BA, Childs JE, et al. Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. Am J Trop Med Hyg. 1994;51:554–62.

    PubMed  CAS  Google Scholar 

  68. Calisher CH, Sweeney W, Mills JN, Beaty BJ. Natural history of Sin Nombre virus in western Colorado. Emerg Infect Dis. 1999;5:126–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Vitullo AD, Merani MS. Vertical transmission of Junin virus in experimentally infected adult Calomys musculinus. Intervirology. 1990;31:339–44.

    PubMed  CAS  Google Scholar 

  70. Dragoo JW, Salazar-Bravo J, Layne LJ, Yates TL. Relationships within the Calomys callosus species group based on amplified fragment length polymorphisms. Biochem Syst Ecol. 2003;31:703–13.

    CAS  Google Scholar 

  71. Salazar-Bravo J, Dragoo JW, Bowen MD, Peters CJ, Ksiazek TG, Yates TL. Natural nidality in Bolivian hemorrhagic fever and the systematics of reservoir species. Infect Genet Evol. 2002;1:191–9.

    PubMed  Google Scholar 

  72. Eisenberg JF, Redford KH. Mammals of the neotropics: the central neotropics. Chicago: University of Chicago; 1999.

    Google Scholar 

  73. Kuns ML. Epidemiology of Machupo virus infection. II. Ecological and control studies of hemorrhagic fever. Am J Trop Med Hyg. 1965;14:813–6.

    PubMed  CAS  Google Scholar 

  74. Johnson KM. Epidemiology of Machupo virus infection. III. Significance of virological observations in man and animals. Am J Trop Med Hyg. 1965;14:816–8.

    PubMed  CAS  Google Scholar 

  75. Johnson KM. Arenaviruses. In: Evans AS, editor. Viral infections of humans. New York: Plenum Medical Book Company; 1989. p. 133–52.

    Google Scholar 

  76. Anderson JF, Johnson RC, Magnarelli LA, Hyde FW. Identification of endemic foci of lyme disease: isolation of borrelia burgdorferi from feral rodents and ticks. J Clin Microbiol. 1985;22:36–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Aleman A, Iguaran H, Puerta H, et al. Primera evidencia serologica de infeccion por hantavirus in roedores en Colombia. Revista de Salud Publica (Colombia). 2006;8:1–12.

    Google Scholar 

  78. Johnson KM. Arenaviruses. In: Fields BN, Knipe KN, editors. Virology. New York: Raven; 1985. p. 1033–53.

    Google Scholar 

  79. Fulhorst CF, Bowen MD, Salas RA, et al. Natural rodent host associations of guanarito and pirital viruses (family Arenaviridae) in central Venezuela. Am J Trop Med Hyg. 1999;61:325–30.

    PubMed  CAS  Google Scholar 

  80. Milazzo ML, Cajimat MN, Duno G, Duno F, Utrera A, Fulhorst CF. Transmission of Guanarito and Pirital viruses among wild rodents, Venezuela. Emerg Infect Dis. 2011;17:2209–15.

    PubMed  PubMed Central  Google Scholar 

  81. Musser GG, Carleton MD. Superfamily Muroidea. In: Wilson DE, Reeder DM, editors. Mammal species of the world, a taxonomic and geographic reference. Baltimore: Johns Hopkins University Press; 2005. p. 894–1531.

    Google Scholar 

  82. Utrera A, Duno G, Ellis BA, et al. Small mammals in agricultural areas of the western llanos of Venezuela: community structure, habitat associations, and relative densities. J Mammal. 2000;81:536–48.

    Google Scholar 

  83. Fulhorst CF, Ksiazek T, Peters CJ, Tesh RB. Experimental infection of the cane mouse Zygodontomys brevicauda (Family Muridae) with Guanarito Virus (Arenaviridae), the etiologic agent of Venezuelan hemorrhagic fever. J Infect Dis. 1999;180:966–9.

    PubMed  CAS  Google Scholar 

  84. Downs WG, Anderson CR, Spence L, Aitken THG, Greenhall AH. Tacaribe virus, a new agent isolated from Artibeus bats and mosquitos in Trinidad, West Indies. Am J Trop Med Hyg. 1963;12:640–6.

    PubMed  CAS  Google Scholar 

  85. Cogswell-Hawkinson A, Bowen R, James S, et al. Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J Virol. 2012;86:5791–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Stenglein MD, Sanders C, Kistler AL, et al. Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. MBio. 2012;3:e00180–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Stephenson EH, Larson EW, Dominik JW. Effect of environmental factors on aerosol-induced Lassa virus infection. J Med Virol. 1984;14:295–303.

    PubMed  CAS  Google Scholar 

  88. Leffel EK, Reed DS. Marburg and Ebola viruses as aerosol threats. Biosecur Bioterror. 2004;2:186–91.

    PubMed  Google Scholar 

  89. Kenyon RH, McKee Jr KT, Zack PM, et al. Aerosol infection of rhesus macaques with Junin virus. Intervirology. 1992;33:23–31.

    PubMed  CAS  Google Scholar 

  90. Reed DS, Lackemeyer MG, Garza NL, Sullivan LJ, Nichols DK. Aerosol exposure to Zaire ebola virus in three nonhuman primate species: differences in disease course and clinical pathology. Microbes Infect. 2011;13:930–6.

    PubMed  Google Scholar 

  91. Rai SK, Micales BK, Wu MS, et al. Timed appearance of lymphocytic choriomeningitis virus after gastric inoculation of mice. Am J Pathol. 1997;151:633–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Lukashevich IS, Djavani M, Rodas JD, et al. Hemorrhagic fever occurs after intravenous, but not after intragastric, inoculation of rhesus macaques with lymphocytic choriomeningitis virus. J Med Virol. 2002;67:171–86.

    PubMed  PubMed Central  Google Scholar 

  93. ter Meulen J, Lukashevich I, Sidibe K, et al. Hunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am J Trop Med Hyg. 1996;55:661–6.

    PubMed  Google Scholar 

  94. Armstrong C, Lillie RD. Experimental lymphocytic choriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis epidemic. Publ Health Rep. 1934;49:1019–27.

    Google Scholar 

  95. Lehmann-Grube F. Lymphocytic choriomeningitis virus. In: Virology monographs. Vienna/New York: Springer; 1971.

    Google Scholar 

  96. Ambrosio AM, Feuillade MR, Gamboa GS, Maiztegui JI. Prevalence of lymphocytic choriomeningitis virus infection in a human population of Argentina. Am J Trop Med Hyg. 1994;50:381–6.

    PubMed  CAS  Google Scholar 

  97. Park JY, Peters CJ, Rollin PE, et al. Age distribution of lymphocytic choriomeningitis virus serum antibody in Birmingham, Alabama: evidence of a decreased risk of infection. Am J Trop Med Hyg. 1997;57:37–41.

    PubMed  CAS  Google Scholar 

  98. Armstrong C. Studies on choriomeningitis and poliomyelitis: Harvey Lecture, October 31, 1940. Bull N Y Acad Med. 1941;17:295–318.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Adair CV, Gauld RL, Smadel JE. Aseptic meningitis, a disease of diverse etiology: clinical and etiologic studies on 854 cases. Ann Intern Med. 1953;39:675–704.

    PubMed  CAS  Google Scholar 

  100. Meyer Jr HM, Johnson RT, Crawford IP, Dascomb HE, Rogers NG. Central nervous system syndromes of “vital” etiology. A study of 713 cases. Am J Med. 1960;29:334–47.

    PubMed  Google Scholar 

  101. Glaser CA, Gilliam S, Schnurr D, et al. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998–2000. Clin Infect Dis. 2003;36:731–42.

    PubMed  Google Scholar 

  102. Davison KL, Crowcroft NS, Ramsay ME, Brown DW, Andrews NJ. Viral encephalitis in England, 1989–1998: what did we miss? Emerg Infect Dis. 2003;9:234–40.

    PubMed  PubMed Central  Google Scholar 

  103. Blumenthal W, Ackermann R, Scheid W. Distribution of the lymphocytic choriomeningitis virus in an endemic area. Dtsch Med Wochenschr. 1968;93:944–8.

    PubMed  CAS  Google Scholar 

  104. Fischer SA, Graham MB, Kuehnert MJ, et al. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med. 2006;354:2235–49.

    PubMed  CAS  Google Scholar 

  105. Palacios G, Druce J, Du L, et al. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med. 2008;358:991–8.

    PubMed  CAS  Google Scholar 

  106. Frame JD, Baldwin Jr JM, Gocke DJ, Troup JM. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg. 1970;19:670–6.

    PubMed  CAS  Google Scholar 

  107. Rose JR. Letters to the editor: a new clinical entity. Lancet. 1956; 2:197.

    Google Scholar 

  108. Monath TP, Maher M, Casals J, Kissling RE, Cacciapuoti A. Lassa fever in the Eastern Province of Sierra Leone, 1970-1972. II. Clinical observations and virological studies on selected hospital cases. Am J Trop Med Hyg. 1974;23:1140–9.

    PubMed  CAS  Google Scholar 

  109. Monath TP, Mertens PE, Patton R, et al. A hospital epidemic of Lassa fever in Zorzor, Liberia, March-April 1972. Am J Trop Med Hyg. 1973;22:773–9.

    PubMed  CAS  Google Scholar 

  110. Richmond JK, Baglole DJ. Lassa fever: epidemiology, clinical features, and social consequences. BMJ. 2003;327:1271–5.

    PubMed  PubMed Central  Google Scholar 

  111. Fichet-Calvet E, Rogers DJ. Risk maps of Lassa fever in West Africa. PLoS Negl Trop Dis. 2009;3:e388.

    PubMed  PubMed Central  Google Scholar 

  112. Bloch A. A serological survey of Lassa fever in Liberia. Bull World Health Organ. 1978;56:811–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Ehichioya DU, Hass M, Olschlager S, et al. Lassa fever, Nigeria, 2005–2008. Emerg Infect Dis. 2010;16:1040–1.

    PubMed  PubMed Central  Google Scholar 

  114. McCormick JB, King IJ, Webb PA, et al. A case-control study of the clinical diagnosis and course of Lassa fever. J Infect Dis. 1987;155:445–55.

    PubMed  CAS  Google Scholar 

  115. Fair J, Jentes E, Inapogui A, et al. Lassa virus-infected rodents in refugee camps in Guinea: a looming threat to public health in a politically unstable region. Vector Borne Zoonotic Dis. 2007;7:167–71.

    PubMed  Google Scholar 

  116. Hotchin J, Kinch W, Benson L. Lytic and turbid plaque-type mutants of lymphocytic choriomeningitis virus as a cause of neurological disease or persistent infection. Infect Immun. 1971;4:281–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Khan S, Goba A, Chu M, et al. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Res. 2008;78:103–15.

    PubMed  CAS  Google Scholar 

  118. Carey DE, Kemp GE, White HA, et al. Lassa fever. Epidemiological aspects of the 1970 epidemic, Jos, Nigeria. Trans R Soc Trop Med Hyg. 1972;66:402–8.

    PubMed  CAS  Google Scholar 

  119. Bausch DG, Rollin PE, Demby AH, et al. Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation. J Clin Microbiol. 2000;38:2670–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Van der Waals FW, Pomeroy KL, Goudsmit J, Asher DM, Gajdusek DC. Hemorrhagic fever virus infections in an isolated rainforest area of central Liberia. Limitations of the indirect immunofluorescence slide test for antibody screening in Africa. Trop Geogr Med. 1986;38:209–14.

    PubMed  Google Scholar 

  121. Bonner PC, Schmidt W-P, Belmain SR, Oshin B, Baglole D, Borchert M. Poor housing quality increases risk of rodent infestation and Lassa fever in refugee camps of Sierra Leone. Am J Trop Med Hyg. 2007;77:169–75.

    PubMed  Google Scholar 

  122. Fisher-Hoch SP, Tomori O, Nasidi A, et al. Review of cases of nosocomial Lassa fever in Nigeria: the high price of poor medical practice. BMJ. 1995;311:857–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Maiztegui JI, Briggiler A, Feuillade MR. Progressive extension of the endemic area and changing incidence of Argentine hemorrhagic fever. Med Microbiol Immunol. 1986;175:149–52.

    PubMed  CAS  Google Scholar 

  124. Health AMo. Report for 26th Annual Meeting of the National Program for Control of Argentine Hemorrhagic Fever. Buenos Aires: Argentine Ministry of Health; 2011.

    Google Scholar 

  125. Centers for Disease Control and Prevention (CDC). Bolivian hemorrhagic feve--l Beni Department, Bolivia, 1994. MMWR Morb Mortal Wkly Rep. 1994;43:943–6.

    Google Scholar 

  126. Salas R, de Manzione N, Tesh RB, et al. Venezuelan haemorrhagic fever – a severe multisystem illness caused by a newly recognized arenavirus. Lancet. 1991;338:1033–6.

    PubMed  CAS  Google Scholar 

  127. Coimbra TLM, Nassar ES, Burattini MN, et al. New arenavirus isolated in Brazil. Lancet. 1994;343:391–2.

    PubMed  PubMed Central  Google Scholar 

  128. Milazzo ML, Campbell GL, Fulhorst CF. Novel arenavirus infection in humans, United States. Emerg Infect Dis. 2011;17:1417–20.

    PubMed  PubMed Central  Google Scholar 

  129. Update on Lassa fever in West Africa. WHO. 2005. http://who.int/csr/don/2004_03_11/en/print/html. Accessed 11 Mar 2005.

  130. Boumandouki P, Formenty P, Epelboin A, et al. Clinical management of patients and deceased during the Ebola outbreak from October to December 2003 in Republic of Congo. Bull Soc Pathol Exot. 2005;98:218–23.

    PubMed  CAS  Google Scholar 

  131. Leifer E, Gocke DJ, Bourne H. Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am J Trop Med Hyg. 1970;19:677–9.

    PubMed  CAS  Google Scholar 

  132. Emond RT, Bannister B, Lloyd G, Southee TJ, Bowen ET. A case of Lassa fever: clinical and virological findings. Br Med J (Clin Res Ed). 1982;285:1001–2.

    CAS  Google Scholar 

  133. Lunkenheimer K, Hufert FT, Schmitz H. Detection of Lassa virus RNA in specimens from patients with Lassa fever by using the polymerase chain reaction. J Clin Microbiol. 1990;28:2689–92.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ. Clinical virology of Lassa fever in hospitalized patients. J Infect Dis. 1987;155:456–64.

    PubMed  CAS  Google Scholar 

  135. Zweighaft RM, Fraser DW, Hattwick MA, et al. Lassa fever: response to an imported case. N Engl J Med. 1977;297:803–7.

    PubMed  CAS  Google Scholar 

  136. Douglas RGW, Wiebenga NH, Couch RB. Bolivian hemorrhagic fever probably transmitted by personal contact. Am J Epidemiol. 1965;82:85–91.

    Google Scholar 

  137. Kilgore PE, Peters CJ, Mills JN, et al. Prospects for the control of Bolivian hemorrhagic fever. Emerg Infect Dis. 1995;1:97–100.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Peters CJ, Kuehne RW, Mercado RR, Le Bow RH, Spertzel RO, Webb PA. Hemorrhagic fever in Cochabamba, Bolivia, 1971. Am J Epidemiol. 1974;99:425–33.

    PubMed  CAS  Google Scholar 

  139. ter Meulen J, Lenz O, Koivogui L, et al. Short communication: Lassa fever in Sierra Leone: UN peacekeepers are at risk. Trop Med Int Health. 2001;6:83–4.

    PubMed  Google Scholar 

  140. Haas WH, Breuer T, Pfaff G, et al. Imported Lassa fever in Germany: surveillance and management of contact persons. Clin Infect Dis. 2003;36:1254–8.

    PubMed  Google Scholar 

  141. Vanzee BE, Douglas RG, Betts RF, Bauman AW, Fraser DW, Hinman AR. Lymphocytic choriomeningitis in university hospital personnel. Clinical features. Am J Med. 1975;58:803–9.

    PubMed  CAS  Google Scholar 

  142. Solbrig MV, McCormick JB. Lassa fever: central nervous system manifestations. J Trop Geogr Neurol. 1991;1:23–30.

    Google Scholar 

  143. Walker DH, McCormick JB, Johnson KM, et al. Pathologic and virologic study of fatal Lassa fever in man. Am J Pathol. 1982;107:349–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Monson MH, Cole AK, Frame JD, Serwint JR, Alexander S, Jahrling PB. Pediatric Lassa fever: a review of 33 Liberian cases. Am J Trop Med Hyg. 1987;36:408–15.

    PubMed  CAS  Google Scholar 

  145. Bausch DG. 389: Viral hemorrhagic fevers. In: Goldman L, Schafer A, editors. Goldman’s Cecil medicine. 24th ed. 2011. p. 2704.

    Google Scholar 

  146. Ketai L, Alrahji AA, Hart B, Enria D, Mettler Jr F. Radiologic manifestations of potential bioterrorist agents of infection. AJR Am J Roentgenol. 2003;180:565–75.

    PubMed  Google Scholar 

  147. Cummins D, Bennett D, Fisher-Hoch SP, Farrar B, McCormick JB. Electrocardiographic abnormalities in patients with Lassa fever. J Trop Med Hyg. 1989;92:350–5.

    PubMed  CAS  Google Scholar 

  148. Branco LM, Matschiner A, Fair JN, et al. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance. Virol J. 2008;5:74.

    PubMed  PubMed Central  Google Scholar 

  149. Saijo M, Georges-Courbot MC, Marianneau P, et al. Development of recombinant nucleoprotein-based diagnostic systems for Lassa fever. Clin Vaccine Immunol. 2007;14:1182–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. de Souza MS, Smith AL. Comparison of isolation in cell culture with conventional and modified mouse antibody production tests for detection of murine viruses. J Clin Microbiol. 1989;27:185–7.

    PubMed  PubMed Central  Google Scholar 

  151. Deibel R, Schryver GD. Viral antibody in the cerebrospinal fluid of patients with acute central nervous system infections. J Clin Microbiol. 1976;3:397–401.

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Zaki SR, Shieh WJ, Greer PW, et al. A novel immunohistochemical assay for the detection of Ebola virus in skin: implications for diagnosis, spread, and surveillance of Ebola hemorrhagic fever. Commission de Lutte contre les Epidemies a Kikwit. J Infect Dis. 1999;179 Suppl 1:S36–47.

    PubMed  Google Scholar 

  153. Niedrig M, Schmitz H, Becker S, et al. First international quality assurance study on the rapid detection of viral agents of bioterrorism. J Clin Microbiol. 2004;42:1753–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Marty AM, Jahrling PB, Geisbert TW. Viral hemorrhagic fevers. Clin Lab Med. 2006;26:345–86, viii.

    PubMed  Google Scholar 

  155. Rodas JD, Lukashevich IS, Zapata JC, et al. Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. J Med Virol. 2004;72:424–35.

    PubMed  PubMed Central  Google Scholar 

  156. Fisher-Hoch SP, McCormick JB, Auperin D, et al. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene. Proc Natl Acad Sci U S A. 1989;86:317–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Jahrling PB, Frame JD, Rhoderick JB, Monson MH. Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization. Trans R Soc Trop Med Hyg. 1985;79:380–4.

    PubMed  CAS  Google Scholar 

  158. Schmitz H, Kohler B, Laue T, et al. Monitoring of clinical and laboratory data in two cases of imported Lassa fever. Microbes Infect. 2002;4:43–50.

    PubMed  Google Scholar 

  159. Fisher-Hoch SP, Hutwagner L, Brown B, McCormick JB. Effective vaccine for Lassa fever. J Virol. 2000;74:6777–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Jahrling PB, Niklasson BS, McCormick JB. Early diagnosis of human Lassa fever by ELISA detection of antigen and antibody. Lancet. 1985;1:250–2.

    PubMed  CAS  Google Scholar 

  161. Bond N, Schieffelin JS, Moses LM, Bennett AJ, Bausch DG. A historical look at the first reported cases of Lassa fever: IgG antibodies 40 years after acute infection. Am J Trop Med Hyg. 2013;88(2):241–4.

    PubMed  PubMed Central  Google Scholar 

  162. Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Dey M, Telser J, Kunz RC, Lees NS, Ragsdale SW, Hoffman BM. Biochemical and spectroscopic studies of the electronic structure and reactivity of a methyl-Ni species formed on methyl-coenzyme M reductase. J Am Chem Soc. 2007;129:11030–2.

    PubMed  CAS  Google Scholar 

  164. Ballenger-Browning KK, Elder JP. Multi-modal Aedes aegypti mosquito reduction interventions and dengue fever prevention. Trop Med Int Health. 2009;14:1542–51.

    PubMed  Google Scholar 

  165. Ellis BR, Wilcox BA. The ecological dimensions of vector-borne disease research and control. Cad Saude Publica. 2009;25 Suppl 1:S155–67.

    PubMed  Google Scholar 

  166. Kelly DJ, Barrie MB, Ross RA, Temple BA, Moses LM, Bausch DG. Housing equity for health equity: a rights-based approach to the control of Lassa fever in post-war Sierra Leone. BMC Int Health Hum Rights. 2013;13:2.

    PubMed  PubMed Central  Google Scholar 

  167. Peters CJ. Emerging infections: lessons from the viral hemorrhagic fevers. Trans Am Clin Climatol Assoc. 2006;117:189–96; discussion 96–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Belanov EF, Muntyanov VP, Kryuk D, et al. Survival of Marburg virus on contaminated surfaces and in aerosol. Russian Progress Virol. 1997;1:47–50.

    Google Scholar 

  169. Pfau CJ. Biochemical and biophysical properties of the arenaviruses. Prog Med Virol. 1974;18:64–80.

    PubMed  CAS  Google Scholar 

  170. Sagripanti JL, Rom AM, Holland LE. Persistence in darkness of virulent alphaviruses, Ebola virus, and Lassa virus deposited on solid surfaces. Arch Virol. 2010;155:2035–9.

    PubMed  CAS  Google Scholar 

  171. Bazhutin NB, Belanov EF, Spiridonov VA, et al. The influence of the methods of experimental infection with Marburg virus on the course of illness in green monkeys (Russian). Vopr Virusol. 1992;37:153–6.

    PubMed  CAS  Google Scholar 

  172. Chepurnov AA, Chuev Iu P, P'Iankov OV, Efimova IV. The effect of some physical and chemical factors on inactivation of the Ebola virus (Russian). Vopr Virusol. 1995;40:74–6.

    PubMed  CAS  Google Scholar 

  173. Chepurnov AA, Bakulina LF, Dadaeva AA, Ustinova EN, Chepurnova TS, Baker Jr JR. Inactivation of Ebola virus with a surfactant nanoemulsion. Acta Trop. 2003;87:315–20.

    PubMed  CAS  Google Scholar 

  174. Lupton HW. Inactivation of Ebola virus with 60Co irradiation. J Infect Dis. 1981;143:291.

    PubMed  CAS  Google Scholar 

  175. Logan JC, Fox MP, Morgan JH, Makohon AM, Pfau CJ. Arenavirus inactivation on contact with N-substituted isatin beta-thiosemicarbazones and certain cations. J Gen Virol. 1975;28:271–83.

    PubMed  CAS  Google Scholar 

  176. Mitchell SW, McCormick JB. Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses. J Clin Microbiol. 1984;20:486–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Saluzzo JF, Leguenno B, Van der Groen G. Use of heat inactivated viral haemorrhagic fever antigens in serological assays. J Virol Methods. 1988;22:165–72.

    PubMed  CAS  Google Scholar 

  178. Kraus AA, Priemer C, Heider H, Kruger DH, Ulrich R. Inactivation of Hantaan virus-containing samples for subsequent investigations outside biosafety level 3 facilities. Intervirology. 2005;48:255–61.

    PubMed  Google Scholar 

  179. Warfield KL, Swenson DL, Olinger GG, et al. Ebola Virus Inactivation with Preservation of Antigenic and Structural Integrity by a Photoinducible Alkylating Agent. J Infect Dis. 2007;196:S276–83.

    PubMed  CAS  Google Scholar 

  180. Maes P, Li S, Verbeeck J, Keyaerts E, Clement J, Van Ranst M. Evaluation of the efficacy of disinfectants against Puumala hantavirus by real-time RT-PCR. J Virol Methods. 2007;141:111–5.

    PubMed  CAS  Google Scholar 

  181. Lytle CD, Sagripanti JL. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol. 2005;79:14244–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol. 1993;59:4374–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Sagripanti JL, Lytle CD. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch Virol. 2011;156(3):489–94.

    PubMed  CAS  Google Scholar 

  184. Garcia CC, Ellenberg PC, Artuso MC, Scolaro LA, Damonte EB. Characterization of Junin virus particles inactivated by a zinc finger-reactive compound. Virus Res. 2009;143:106–13.

    PubMed  CAS  Google Scholar 

  185. WHO, CDC. Infection control for viral haemorrhagic fevers in the African health care setting. Atlanta: Centers for Disease Control and Prevention; 1998.

    Google Scholar 

  186. Mills JN, Corneli A, Young JC, Garrison LE, Khan AS, Ksiazek TG. Hantavirus pulmonary syndrome–United States: updated recommendations for risk reduction. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51:1–12.

    Google Scholar 

  187. Centers for Disease Control and Prevention (CDC). Update: interim guidance for minimizing risk for human lymphocytic choriomeningitis virus infection associated with pet rodents. MMWR Morb Mortal Wkly Rep. 2005;54:799–801.

    Google Scholar 

  188. The National Personal Protective Technology Laboratory (NPPTL): NIOSH-Approved Particulate Filtering Facepiece Respirators. Centers for Disease Control and Prevention. 2012. http://www.cdc.gov/niosh/npptl/topics/respirators/disp_part/default.html. Accessed 15 July 2013.

  189. Fulhorst CF, Milazzo ML, Armstrong LR, et al. Hantavirus and arenavirus antibodies in persons with occupational rodent exposure. Emerg Infect Dis. 2007;13:532–8.

    PubMed  PubMed Central  Google Scholar 

  190. Mills J, Yates T, Childs J, et al. Guidelines for working with rodents potentially infected with hantavirus. J Mammal. 1995;76:716–22.

    Google Scholar 

  191. Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350:342–50.

    PubMed  CAS  Google Scholar 

  192. Ambrosio A, Saavedra M, Mariani M, Gamboa G, Maiza A. Argentine hemorrhagic fever vaccines. Hum Vaccin. 2011;7:694–700.

    PubMed  CAS  Google Scholar 

  193. McCormick JB, Mitchell SW, Kiley MP, Ruo S, Fisher-Hoch SP. Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J Med Virol. 1992;37:1–7.

    PubMed  CAS  Google Scholar 

  194. Bergthaler A, Gerber NU, Merkler D, Horvath E, de la Torre JC, Pinschewer DD. Envelope exchange for the generation of live-attenuated arenavirus vaccines. PLoS Pathog. 2006;2:e51.

    PubMed  PubMed Central  Google Scholar 

  195. Pushko P, Geisbert J, Parker M, Jahrling P, Smith J. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol. 2001;75:11677–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Asper M, Sternsdorf T, Hass M, et al. Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J Virol. 2004;78:3162–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  197. Firsova IV, Shatokhina IV, Borisevich IV, et al. Use of guinea pigs for assessing the efficacy of vaccines against Lassa fever. Vopr Virusol. 2003;48:43–5.

    PubMed  CAS  Google Scholar 

  198. Grant-Klein RJ, Altamura LA, Schmaljohn CS. Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses. Virus Res. 2011;162:148–61.

    PubMed  CAS  Google Scholar 

  199. Bredenbeek PJ, Molenkamp R, Spaan WJ, et al. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology. 2006;345:299–304.

    PubMed  CAS  PubMed Central  Google Scholar 

  200. Jiang X, Dalebout TJ, Bredenbeek PJ, et al. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine. 2011;29:1248–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  201. Lukashevich IS, Carrion Jr R, Salvato MS, et al. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine. 2008;26:5246–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  202. Lukashevich IS, Patterson J, Carrion R, et al. A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. J Virol. 2005;79:13934–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  203. Carrion Jr R, Patterson JL, Johnson C, et al. A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine. 2007;25:4093–102.

    PubMed  CAS  PubMed Central  Google Scholar 

  204. Branco LM, Grove JN, Geske FJ, et al. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol J. 2010;7:279.

    PubMed  PubMed Central  Google Scholar 

  205. Geisbert TW, Jones S, Fritz EA, et al. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005;2:e183.

    PubMed  PubMed Central  Google Scholar 

  206. Falzarano D, Feldmann F, Grolla A, et al. Single immunization with a monovalent vesicular stomatitis virus-based vaccine protects nonhuman primates against heterologous challenge with Bundibugyo ebolavirus. J Infect Dis. 2011;204 Suppl 3:S1082–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  207. Hopkins AS, Whitetail-Eagle J, Corneli AL, et al. Experimental evaluation of rodent exclusion methods to reduce hantavirus transmission to residents in a Native American community in New Mexico. Vector Borne Zoonotic Dis. 2002;2:61–8.

    PubMed  Google Scholar 

  208. Geisbert TW, Daddario-Dicaprio KM, Lewis MG, et al. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog. 2008;4:e1000225.

    PubMed  PubMed Central  Google Scholar 

  209. Bausch DG, Hadi CM, Khan SH, Lertora JJ. Review of the literature and proposed guidelines for the use of oral ribavirin as postexposure prophylaxis for Lassa fever. Clin Infect Dis. 2010;51:1435–41.

    PubMed  CAS  Google Scholar 

  210. Blumberg L, Enria D, Bausch DG. Viral haemorrhagic fevers. In: Farrar J et al., editors. Manson’s tropical diseases. 23rd ed. Philadelphia: Elsevier Publishing; 2013.

    Google Scholar 

Download references

Acknowledgments

The authors thank Andrew Bennett, Cecilia Gonzales, Barbara Ellis, Claudia Guezala, Maria Silva, Ruben Valle, and Landon Vom Steeg for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Bausch MD, MPH&TM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bausch, D.G., Mills, J.N. (2014). Arenaviruses: Lassa Fever, Lujo Hemorrhagic Fever, Lymphocytic Choriomeningitis, and the South American Hemorrhagic Fevers. In: Kaslow, R., Stanberry, L., Le Duc, J. (eds) Viral Infections of Humans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7448-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7448-8_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7447-1

  • Online ISBN: 978-1-4899-7448-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation