The Interplay Between White Matter, Mitochondria, and Neuroprotection

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Abstract

The relationship between white matter injury (WMI) and mitochondrial dysfunction (either within neurons or glia) is emerging as a sophisticated synergistic interconnection that has only recently begun to be investigated. In a recent shift away from the traditional neurocentric view of the brain, the new Gestalt perspective of the CNS embraces the intercellular interactions between grey matter and white matter and their substantial dependence on mitochondria for survival. In addition, the variations in mitochondrial activity and dynamics between cell types may underlie inherent differences in vulnerability between glial and neural cells. Thus, the newer questions on the interplay between white matter, mitochondria, and neurons are themselves complex. First, what are the implications of mitochondrial dysfunction within white matter cells themselves, and second, what is the global impact of WMI on mitochondrial function within neuronal cells? To address these questions, the present review describes the nature of mitochondria in neurons and glia and examines their functional roles. We then explore the impact of WMI on mitochondria and neuronal fate. Finally, the possibility that white matter diseases are closely related to mitochondrial disorders is considered, with reference to the conspicuous overlap in their clinical presentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24(2):565–575

    Article  PubMed  CAS  Google Scholar 

  • Amiri M, Hollenbeck PJ (2008) Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol 68(11):1348–1361

    Article  PubMed  CAS  Google Scholar 

  • Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P (2006) Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J Neurosci Res 83(8):1533–1539

    Article  PubMed  CAS  Google Scholar 

  • Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21(4):1302–1312

    PubMed  CAS  Google Scholar 

  • Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38(2 suppl):724–730

    Article  PubMed  Google Scholar 

  • Bambrick L, Kristian T, Fiskum G (2004) Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res 29(3):601–608

    Article  PubMed  CAS  Google Scholar 

  • Bambrick LL, Chandrasekaran K, Mehrabian Z, Wright C, Krueger BK, Fiskum G (2006) Cyclosporin A increases mitochondrial calcium uptake capacity in cortical astrocytes but not cerebellar granule neurons. J Bioenerg Biomembr 38(1):43–47

    Article  PubMed  CAS  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    PubMed  CAS  Google Scholar 

  • Bhatti MT, Newman NJ (1999) A multiple sclerosis-like illness in a man harboring the mtDNA 14484 mutation. J Neuroophthalmol 19(1):28–33

    Article  PubMed  CAS  Google Scholar 

  • Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30(42):13983–13991

    Article  PubMed  CAS  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53

    Article  PubMed  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66(5):839–843

    Article  PubMed  CAS  Google Scholar 

  • Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J (2012) White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 32(3):413–424

    Article  PubMed  CAS  Google Scholar 

  • Campbell GR, Mahad DJ (2012) Mitochondrial changes associated with demyelination: consequences for axonal integrity. Mitochondrion 12(2):173–179

    Article  PubMed  CAS  Google Scholar 

  • Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R (2008) Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 28(16):4115–4122

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23(2):137–149

    Article  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(12):1895–1904

    Article  PubMed  CAS  Google Scholar 

  • Dugan LL, Kim-Han JS (2004) Astrocyte mitochondria in in vitro models of ischemia. J Bioenerg Biomembr 36(4):317–321

    Article  PubMed  CAS  Google Scholar 

  • Edgar JM, McCulloch MC, Thomson CE, Griffiths IR (2008) Distribution of mitochondria along small-diameter myelinated central nervous system axons. J Neurosci Res 86(10):2250–2257

    Article  PubMed  CAS  Google Scholar 

  • Finsterer J, Hoftberger R, Stollberger C, Rolinski B (2012) Mimicry between mitochondrial disorder and multiple sclerosis. Metab Brain Dis 27(2):217–220

    Article  PubMed  CAS  Google Scholar 

  • Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    PubMed  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111(2):522–536

    Article  PubMed  CAS  Google Scholar 

  • Genc S, Kurnaz IA, Ozilgen M (2011) Astrocyte-neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions—in silico study supported by in vitro expression data. BMC Syst Biol 5:162

    Article  PubMed  CAS  Google Scholar 

  • Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, Menard D, McDonald WI, Compston DA (1992) Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain 115(pt 4):979–989

    Article  PubMed  Google Scholar 

  • Harris JJ, Attwell D (2012) The energetics of CNS white matter. J Neurosci 32(1):356–371

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219(4591):1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Hollensworth SB, Shen C, Sim JE, Spitz DR, Wilson GL, LeDoux SP (2000) Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic Biol Med 28(8):1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Hwang JM, Chang BL, Park SS (2001) Leber’s hereditary optic neuropathy mutations in Korean patients with multiple sclerosis. Ophthalmologica 215(6):398–400

    Article  PubMed  CAS  Google Scholar 

  • Idestrup CP, Salter MW (1998) P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase c/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord. Neuroscience 86(3):913–923

    Article  PubMed  CAS  Google Scholar 

  • Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30(12):1982–1986

    Article  PubMed  CAS  Google Scholar 

  • Kahraman S, Bambrick LL, Fiskum G (2011) Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J Neurosci Res 89(12):1973–1978

    Article  PubMed  CAS  Google Scholar 

  • Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657

    Article  PubMed  CAS  Google Scholar 

  • Kellar-Wood H, Robertson N, Govan GG, Compston DA, Harding AE (1994) Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol 36(1):109–112

    Article  PubMed  CAS  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276(7):4588–4596

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GG, Hoftberger R, Majtenyi K, Horvath R, Barsi P, Komoly S, Lassmann H, Budka H, Jakab G (2005) Neuropathology of white matter disease in Leber’s hereditary optic neuropathy. Brain 128(pt 1):35–41

    PubMed  Google Scholar 

  • Kristian T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Methods 152(1–2):136–143

    Article  PubMed  CAS  Google Scholar 

  • Krzeminski P, Misiewicz I, Pomorski P, Kasprzycka-Guttman T, Baranska J (2007) Mitochondrial localization of P2Y1, P2Y2 and P2Y12 receptors in rat astrocytes and glioma C6 cells. Brain Res Bull 71(6):587–592

    Article  PubMed  CAS  Google Scholar 

  • Larsen NJ, Ambrosi G, Mullett SJ, Berman SB, Hinkle DA (2011) DJ-1 knock-down impairs astrocyte mitochondrial function. Neuroscience 196:251–264

    Article  PubMed  CAS  Google Scholar 

  • Lax NZ, Campbell GR, Reeve AK, Ohno N, Zambonin J, Blakely EL, Taylor RW, Bonilla E, Tanji K, DiMauro S, Jaros E, Lassmann H, Turnbull DM, Mahad DJ (2012) Loss of myelin-associated glycoprotein in kearns-sayre syndrome. Arch Neurol 69(4):490–499

    Article  PubMed  Google Scholar 

  • LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL (2007) Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145(4):1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, ** L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    Article  PubMed  CAS  Google Scholar 

  • Lev D, Yanoov-Sharav M, Watemberg N, Leshinsky-Silver E, Lerman-Sagie T (2002) White matter abnormalities in Leber’s hereditary optic neuropathy due to the 3460 mitochondrial DNA mutation. Eur J Paediatr Neurol 6(2):121–123

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887

    Article  PubMed  CAS  Google Scholar 

  • Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K (2009a) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29(3):441–463

    Article  PubMed  CAS  Google Scholar 

  • Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009b) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(suppl 1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta 1802(1):66–79

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70(2):391–425

    PubMed  CAS  Google Scholar 

  • Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(pt 3):917–927

    PubMed  Google Scholar 

  • Mullett SJ, Hinkle DA (2009) DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33(1):28–36

    Article  PubMed  Google Scholar 

  • Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA (2013) DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci 49(3):507–511

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Obayashi H, Ohta M, Uchiyama T, Hao Q, Saida T (1995) No association of the 11778 mitochondrial DNA mutation and multiple sclerosis in Japan. Neurology 45(7):1333–1334

    Article  PubMed  CAS  Google Scholar 

  • Oliveira JM, Goncalves J (2009) In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum. J Biol Chem 284(8):5010–5020

    Article  PubMed  CAS  Google Scholar 

  • Olsen NK, Hansen AW, Norby S, Edal AL, Jorgensen JR, Rosenberg T (1995) Leber’s hereditary optic neuropathy associated with a disorder indistinguishable from multiple sclerosis in a male harbouring the mitochondrial DNA 11778 mutation. Acta Neurol Scand 91(5):326–329

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Lu Y, Yue S, Giffard RG (2012) miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12(2):213–219

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91(22):10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Benington JH (1996) Astrocyte glucose metabolism under normal and pathological conditions in vitro. Dev Neurosci 18(5–6):515–521

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13(1):162–169

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Farrell K, Stein BA (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21(1):142–153

    Article  PubMed  CAS  Google Scholar 

  • Talley Watts L, Sprague S, Zheng W, Garling RJ, Jimenez D, Digicaylioglu M, Lechleiter J (2013) Purinergic 2Y(1) receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J Neurotrauma 30(1):55–66

    Article  PubMed  Google Scholar 

  • Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81(5):644–652

    Article  PubMed  CAS  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107(41):17757–17762

    Article  PubMed  CAS  Google Scholar 

  • Voloboueva LA, Suh SW, Swanson RA, Giffard RG (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J Neurochem 102(4):1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Holstein JD, Upadhyay G, Lin DT, Conway S, Muller E, Lechleiter JD (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27(24):6510–6520

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Emery JF, Ouyang YB, Voloboueva LA, Giffard RG (2010) Astrocyte targeted overexpression of Hsp72 or SOD2 reduces neuronal vulnerability to forebrain ischemia. Glia 58(9):1042–1049

    Article  PubMed  Google Scholar 

  • Yoo BK, Choi JW, Yoon SY, Ko KH (2005) Protective effect of adenosine and purine nucleos(t)ides against the death by hydrogen peroxide and glucose deprivation in rat primary astrocytes. Neurosci Res 51(1):39–44

    Article  PubMed  CAS  Google Scholar 

  • Young EA, Fowler CD, Kidd GJ, Chang A, Rudick R, Fisher E, Trapp BD (2008) Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Ann Neurol 63(4):428–435

    Article  PubMed  Google Scholar 

  • Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Watts LT, Holstein DM, Prajapati SI, Keller C, Grass EH, Walter CA, Lechleiter JD (2010) Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 5(12):e14401

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD (2013) P2Y(1)R-initiated, IP(3)R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab 33(4):600–611

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26(43):11111–11119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stetler, R.A. et al. (2014). The Interplay Between White Matter, Mitochondria, and Neuroprotection. In: Baltan, S., Carmichael, S., Matute, C., **, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation