A Changing View of the Auditory System Obtained from the Ears of Bats

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

Abstract

For the past 43 years I have been conducting research on how sensory systems encode and represent features of the external world in the brain. This has been, and continues to be, an exciting and rewarding adventure. Indeed, it is difficult to convey the sense of excitement, really exhilaration, that is part and parcel of discovery, when one sees nature reveal a part of itself for the first time. Now, previously unrelated parts begin to fit into a compelling unity, and the realization of that unity provides new and unique insights into the grand scheme of life. The insights are very personal because no one has ever before seen things quite in those ways.

In this chapter, I recount the discoveries my colleagues and I made at each stage of my career and how those discoveries changed my understanding of the mammalian auditory system. I gradually learned that the processing in the auditory system is far more complex, diverse, and expansive than I had previously thought, or even imagined. It is full of surprises because nothing is quite as it seems. Nuance prevails, and the nuance profoundly impacts the functioning of the circuitry in the ascending auditory pathway, changing it from something that at first appeared simple into something far more complex, but also more interesting and conceptually important. It was, for me at least, not only exciting and but enormously rewarding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. C. (1979). Ascending projections to the inferior colliculus. Journal of Comparative Neurology,183, 519–538.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. C., & Mugnaini, E. (1984). Dorsal nucleus of the lateral lemniscus: A nucleus of GABAergic projection neurons. Brain Research Bulletin,14, 585–590.

    Article  Google Scholar 

  • Andoni, S., & Pollak, G. D. (2011). Selectivity for spectral motion as a neural computation for encoding natural communication signals in bat inferior colliculus. Journal of Neuroscience,31(46), 16529–16540.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bamann, C., Nagel, G., & Bamberg, E. (2010). Microbial rhodopsins in the spotlight. Current Opinion in Neurobiology,20, 610–616.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, E. E., Klug, A., & Pollak, G. D. (2002). Spectral determination of responses to species-specific calls in the dorsal nucleus of the lateral lemniscus. Journal of Neurophysiology,88(4), 1955–1967.

    PubMed  Google Scholar 

  • Bohn, K. M., Schmidt-French, B., Ma, S. T., & Pollak, G. D. (2008). Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. Journal of the Acoustical Society of America,124(3), 1838–1848.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohn, K. M., Schmidt-French, B., Schwartz, C., Smotherman, M., & Pollak, G. D. (2009). Versatility and stereotypy of free-tailed bat songs. PLoS One,4(8), e6746.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boudreau, J. C., & Tsuchitani, C. (1968). Binaural interaction in the cat superior olive S segment. Journal of Neurophysiology,31(3), 442–454.

    PubMed  CAS  Google Scholar 

  • Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology,84(4), 1790–1799.

    PubMed  CAS  Google Scholar 

  • Brugge, J. F., Anderson, D. J., & Aitkin, L. M. (1970). Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. Journal of Neurophysiology,33(3), 441–458.

    PubMed  CAS  Google Scholar 

  • Bruns, V. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology,106, 77–86.

    Article  Google Scholar 

  • Burger, R. M., & Pollak, G. D. (1998). Analysis of the role of inhibition in sha** responses to sinusoidally amplitude-modulated signals in the inferior colliculus. Journal of Neurophysiology,80(4), 1686–1701.

    PubMed  CAS  Google Scholar 

  • Burger, R. M., & Pollak, G. D. (2001). Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. Journal of Neuroscience,21(13), 4830–4843.

    PubMed  CAS  Google Scholar 

  • Caspary, D. M., Palombi, P. S., & Hughes, L. F. (2002). GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus. Hearing Research,168(1–2), 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Casseday, J. H., Ehrlich, D., & Covey, E. (1994). Neural tuning for sound duration: Role of inhibitory mechanisms in the inferior colliculus. Science,264, 847–850.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Kelly, J. B., & Wu, S. H. (1999). The commissure of probst as a source of GABAergic inhibition. Hearing Research,138(1–2), 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Covey, E., Kauer, J. A., & Casseday, J. H. (1996). Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. Journal of Neuroscience,16(9), 3009–3018.

    PubMed  CAS  Google Scholar 

  • Dahmen, J. C., Keating, P., Nodal, F. R., Schulz, A. L., & King, A. J. (2010). Adaptation to stimulus statistics in the perception and neural representation of auditory space. Neuron,66(6), 937–948.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davis, K. A. (2002). Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. Journal of Neurophysiology,87(4), 1824–1835.

    PubMed  Google Scholar 

  • Faingold, C. L., Anderson, C. A., & Randall, M. E. (1993). Stimulation or blockade of the dorsal nucleus of the lateral lemniscus alters binaural and tonic inhibition in contralateral inferior colliculus neurons. Hearing Research,69, 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery, Z. M., & Pollak, G. D. (1984). Neural mechanisms of sound localization in an echolocating bat. Science,225(4663), 725–728.

    Article  PubMed  CAS  Google Scholar 

  • Fuzessery, Z. M., & Pollak, G. D. (1985). Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. Journal of Neurophysiology,54(4), 757–781.

    PubMed  CAS  Google Scholar 

  • Fuzessery, Z. M., Richardson, M. D., & Coburn, M. S. (2006). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the inferior colliculus of the pallid bat. Journal of Neurophysiology,96(3), 1320–1336.

    Article  PubMed  Google Scholar 

  • Gittelman, J. X., & Pollak, G. D. (2011). It’s about time: How input timing is used and not used to create emergent properties in the auditory system. Journal of Neuroscience,31(7), 2576–2583.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gittelman, J. X., Li, N., & Pollak, G.D. (2009). Mechanisms underlying directional selectivity for frequency modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. Journal of Neuroscience,29, 13030–13041.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gittelman, J. X., Wang, L., Colburn, H. S., & Pollak, G. D. (2012). Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Frontal Neural Circuits,6(article 67), 67.

    Google Scholar 

  • Griffin, D. R. (1986). Listening in the dark. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Grothe, B. (1994). Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. Journal of Neurophysiology,71(2), 706–721.

    PubMed  CAS  Google Scholar 

  • Grothe, B., Vater, M., Casseday, J. H., & Covey, E. (1992). Monaural interaction of excitation and inhibition in the medial superior olive of the mustached bat: An adaptation for biosonar. Proceedings of the National Academy of Sciences of the USA,89(11), 5108–5112.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grothe, B., Schweizer, H., Pollak, G. D., Schuller, G., & Rosemann, C. (1994). Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana. Journal of Comparative Neurology,343(4), 630–646.

    Article  PubMed  CAS  Google Scholar 

  • Grothe, B., Park, T. J., & Schuller, G. (1997). Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. Journal of Neurophysiology,77(3), 1553–1565.

    PubMed  CAS  Google Scholar 

  • Klug, A., Bauer, E. E., Hanson, J. T., Hurley, L., Meitzen, J., & Pollak, G. D. (2002). Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. Journal of Neurophysiology,88(4), 1941–1954.

    PubMed  Google Scholar 

  • Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science,200(4343), 795–797.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, H. A. (1975). The August Krogh principle: “For many problems there is an animal on which it can be most conveniently studied.” Journal of Experimental Zoology,194(1), 221–226.

    Google Scholar 

  • Kuo, R. I., & Wu, G. K. (2012). Generation of direction selectivity in the auditory system. Neuron,73, 1016–1027.

    Article  PubMed  CAS  Google Scholar 

  • Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology,60(6), 1799–1822.

    Google Scholar 

  • Li, L., & Kelly, J. B. (1992). Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. Journal of Neuroscience,12(11), 4530–4539.

    PubMed  CAS  Google Scholar 

  • Li, N., Gittelman, J. X., & Pollak, G. D. (2010). Intracellular recordings reveal novel features of neurons that code interaural intensity disparities in the inferior colliculus. Journal of Neuroscience,30(43), 14573–14584.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malmierca, M. S., Rees, A., Le Beau, F. E., & Bjaalie, J. G. (1995). Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. Journal of Comparative Neurology,357(1), 124–144.

    Article  PubMed  CAS  Google Scholar 

  • Malmierca, M. S., Hernandez, O., Falconi, A., Lopez-Poveda, E. A., Merchan, M., & Rees, A. (2003). The commissure of the inferior colliculus shapes frequency response areas in rat: An in vivo study using reversible blockade with microinjection of kynurenic acid. Experimental Brain Research,153(4), 522–529.

    Article  PubMed  Google Scholar 

  • Merchan, M. A., Saldana, E., & Plaza, I. (1994). Dorsal nucleus of the lateral lemniscus in the rat: concentric organization and tonotopic projection to the inferior colliculus. Journal of Comparative Neurology,342(2), 259–278.

    Article  PubMed  CAS  Google Scholar 

  • Mittmann, D. H., & Wenstrup, J. J. (1995). Combination-sensitive neurons in the inferior colliculus. Hearing Research,90(1–2), 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D. R., Kotak, V. C., & Sanes, D. H. (1998). Commissural and lemniscal synaptic input to the gerbil inferior colliculus. Journal of Neurophysiology,80(5), 2229–2236.

    PubMed  CAS  Google Scholar 

  • Oliver, D. L. (1984). Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience,11(2), 409–424.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, D. L., & Shneiderman, A. (1989). An EM study of the dorsal nucleus of the lateral lemniscus: Inhibitory, commissural, synaptic connections between ascending auditory pathways. Journal of Neuroscience,9(3), 967–982.

    PubMed  CAS  Google Scholar 

  • Oliver, D. L., Winer, J. A., Beckius, G. E., & Saint Marie, R. L. (1994). Morphology of GABAergic neurons in the inferior colliculus of the cat. Journal of Comparative Neurology,340(1), 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Park, T. J., & Pollak, G. D. (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: Implications for encoding sound location. Journal of Neuroscience,13(5), 2050–2067.

    Google Scholar 

  • Park, T. J., & Pollak, G. D. (1994). Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. Journal of Neurophysiology,72(3), 1080–1102.

    PubMed  CAS  Google Scholar 

  • Park, T. J., & Grothe, B. (1996). From pattern recognition to sound localization: A by-product of growing larger during evolution. Naturwissenschaften,83(1), 30–32.

    PubMed  CAS  Google Scholar 

  • Park, T. J., Grothe, B., Pollak, G. D., Schuller, G., & Koch, U. (1996). Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. Journal of Neuroscience,16(20), 6554–6566.

    PubMed  CAS  Google Scholar 

  • Park, T. J., Monsivais, P., & Pollak, G. D. (1997). Processing of interaural intensity differences in the LSO: Role of interaural threshold differences. Journal of Neurophysiology,77(6), 2863–2878.

    PubMed  CAS  Google Scholar 

  • Park, T. J., Klug, A., Oswald, J. P., & Grothe, B. (1998). A novel circuit in the bat’s midbrain recruits neurons into sound localization processing. Naturwissenschaften,85, 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Pecka, M., Zahn, T. P., Saunier-Rebori, B., Siveke, I., Felmy, F., Wiegrebe, L., Klug, A., Pollak, G. D., & Grothe, B. (2007). Inhibiting the inhibition: A neuronal network for sound localization in reverberant environments. Journal of Neuroscience,27(7), 1782–1790.

    Article  PubMed  CAS  Google Scholar 

  • Pollak, G., Henson, O. W., Jr., & Novick, A. (1972). Cochlear microphonic audiograms in the “pure tone” bat Chilonycteris parnellii parnellii. Science,176(4030), 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Pollak, G. D. (1997). Roles of GABAergic inhibition for the binaural processing of multiple sound sources in the inferior colliculus. Annals of Otology, Rhinology, and Laryngology Supplement,168, 44–54.

    Google Scholar 

  • Pollak, G. D. (2012). Circuits for processing dynamic interaural intensity disparities in the inferior colliculus. Hearing Research,288, 47–57.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pollak, G. D., Burger, R. M., & Klug, A. (2003). Dissecting the circuitry of the auditory system. Trends in Neuroscience,26(1), 33–39.

    Article  CAS  Google Scholar 

  • Pollak, G. D., Gittelman, J. X., Li, N., & **e, R. (2011a). Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: A comparison of bats with other mammals. Hearing Research,273(1–2), 134–144.

    Article  PubMed  Google Scholar 

  • Pollak, G. D., **e, R., Gittelman, J. X., Andoni, S., & Li, N. (2011b). The dominance of inhibition in the inferior colliculus. Hearing Research,274(1–2), 27–39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poon, P. W., Chen, X., & Hwang, J. C. (1991). Basic determinants for FM responses in the inferior colliculus of rats. Experimental Brain Research,83(3), 598–606.

    Article  PubMed  CAS  Google Scholar 

  • Portfors, C. V., & Wenstrup, J. J. (1999). Delay-tuned neurons in the inferior colliculus of the mustached bat: Implications for analyses of target distance. Journal of Neurophysiology,82(3), 1326–1338.

    PubMed  CAS  Google Scholar 

  • Portfors, C. V., & Felix, R. A., 2nd (2005). Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience,136(4), 1159–1170.

    Article  PubMed  CAS  Google Scholar 

  • Priebe, N. J., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron,45(1), 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Ross, L. S., & Pollak, G. D. (1989). Differential ascending projections to aural regions in the 60 kHz contour of the mustache bat’s inferior colliculus. Journal of Neuroscience,9(8), 2819–2834.

    Google Scholar 

  • Ross, L. S., Pollak, G. D., & Zook, J. M. (1988). Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. Journal of Comparative Neurology,270(4), 488–505.

    Article  PubMed  CAS  Google Scholar 

  • Saldana, E., & Merchan, M. A. (1992). Intrinsic and commissural connections of the rat inferior colliculus. Journal of Comparative Neurology,319(3), 417–437.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, D. H., Malone, B. J., & Semple, M. N. (1998). Role of synaptic inhibition in processing of dynamic binaural level stimuli. Journal of Neuroscience,18(2), 794–803.

    PubMed  CAS  Google Scholar 

  • Schnitzler, H.-U., Suga, N., & Simmons, J.A. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology,106, 99–110.

    Article  Google Scholar 

  • Semple, M. N., & Aitkin, L. M. (1979). Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. Journal of Neurophysiology,42(6), 1626–1639.

    PubMed  CAS  Google Scholar 

  • Suga, N., Neuweiler, G., & Moller, J. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology,106, 111–125.

    Article  Google Scholar 

  • Suga, N., O’Neill, W. E., Kujirai, K., & Manabe, T. (1983). Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. Journal of Neurophysiology,49(6), 1573–1626.

    PubMed  CAS  Google Scholar 

  • Wenstrup, J. J., Ross, L. S., & Pollak, G. D. (1985). A functional organization of binaural responses in the inferior colliculus. Hearing Research,17(2), 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Wenstrup, J. J., Ross, L. S., & Pollak, G. D. (1986). Binaural response organization within a frequency-band representation of the inferior colliculus: Implications for sound localization. Journal of Neuroscience,6(4), 962–973.

    PubMed  CAS  Google Scholar 

  • Wenstrup, J. J., Fuzessery, Z. M., & Pollak, G. D. (1988a). Binaural neurons in the mustache bat’s inferior colliculus. I. Responses of 60-kHz EI units to dichotic sound stimulation. Journal of Neurophysiology,60(4), 1369–1383.

    Google Scholar 

  • Wenstrup, J. J., Fuzessery, Z. M., & Pollak, G. D. (1988b). Binaural neurons in the mustache bat’s inferior colliculus. II. Determinants of spatial responses among 60–kHz EI units. Journal of Neurophysiology,60(4), 1384–1404.

    Google Scholar 

  • **e, R., Meitzen, J., & Pollak, G. D. (2005). Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. Journal of Neurophysiology,94(6), 4019–4037.

    Article  PubMed  Google Scholar 

  • **e, R., Gittelman, J. X., & Pollak, G. D. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. Journal of Neuroscience,27(35), 9469–9481.

    Article  PubMed  CAS  Google Scholar 

  • **e, R., Gittelman, J. X., Li, N., & Pollak, G. D. (2008). Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus. Neuroscience,154(1), 245–256.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., & Pollak, G. D. (1994a). Binaural inhibition in the dorsal nucleus of the lateral lemniscus of the mustache bat affects responses for multiple signals. Auditory Neuroscience,1, 1–17.

    Google Scholar 

  • Yang, L., & Pollak, G. D. (1994b). The roles of GABAergic and glycinergic inhibition on binaural processing in the dorsal nucleus of the lateral lemniscus of the mustache bat. Journal of Neurophysiology,71(6), 1999–2013.

    PubMed  CAS  Google Scholar 

  • Yang, L., Liu, Q., & Pollak, G. D. (1996). Afferent connections to the dorsal nucleus of the lateral lemniscus of the mustache bat: Evidence for two functional subdivisions. Journal of Comparative Neurology,373(4), 575–592.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., & Pollak, G. D. (1998). Features of ipsilaterally evoked inhibition in the dorsal nucleus of the lateral lemniscus. Hearing Research,122(1–2), 125–141.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, F., Gradinaru, V., Adamantides, A. A., Durand, R., Airan, R. D., de Lecea, L., et al. (2010). Optogenetic interrogation of neural circuits: Technology for probing mammalian brain. Nature Protocols,5(3), 439–456.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J. M., & Casseday, J. H. (1982a). Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. Journal of Comparative Neurology,207(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J. M., & Casseday, J. H. (1982b). Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. Journal of Comparative Neurology,207(1), 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Zook, J. M., Winer, J. A., Pollak, G. D., & Bodenhamer, R. D. (1985). Topology of the central nucleus of the mustache bat’s inferior colliculus: Correlation of single unit properties and neuronal architecture. Journal of Comparative Neurology,231(4), 530–546.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, P. M. (1987). The precedence effect. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing (pp. 85–105). New York: Springer Verlag.

    Google Scholar 

Download references

Acknowledgments

I would like to express my sincerest appreciation to the National Institutes of Health for their generous support of my research over the past 40 years. I also thank Carl Resler for his expertise with computers and his invaluable technical support throughout my career. Finally, I thank my graduate students, postdoctoral fellows, and all of my colleagues who have been so supportive and have taught me so much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Pollak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollak, G.D. (2014). A Changing View of the Auditory System Obtained from the Ears of Bats. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_24

Download citation

Publish with us

Policies and ethics

Navigation