Particle-Cracking Modeling of Metal Matrix Composites

  • Living reference work entry
  • First Online:
Handbook of Damage Mechanics
  • 234 Accesses

Abstract

This chapter aims to model the mechanical behavior of particle-reinforced metal matrix composites with particle cracking. Specifically a micromechanics-based elastoplastic constitutive model is coupled with damage mechanics due to particle cracking to predict the overall mechanical behavior of particle-reinforced metal matrix composites. Unidirectionally aligned spheroidal elastic particles, some of which contain penny-shaped cracks, are randomly distributed in the elastoplastic metal matrix. These imperfect particles, attributed to progressive particle cracking, are modeled by using the double-inclusion concept. The ensemble-volume averaged homogenization procedure is employed to estimate the effective yield function of the damaged composites. The elastoplastic mechanical behavior of particulate composites under uniaxial loading condition is simulated and compared with available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • G. Bao, Damage due to fracture of brittle reinforcements in a ductile matrix. Acta Metall. Mater. 40(10), 2547–2555 (1992)

    Article  Google Scholar 

  • M. Berveiller, A. Zaoui, An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26, 325–344 (1979)

    Article  Google Scholar 

  • N. Bourgeois, Caracterisation et modelisation micromecanique du comportement et de lendommagement dun composite a matrice metallique, Al/SiCp. Doctoral Thesis, Ecole Centrale des Arts et Manufactures: Chatenay-Malabry, France, 1994

    Google Scholar 

  • J.R. Brockenbrough, F.W. Zok, On the role of particle cracking in flow and fracture of metal-matrix composites. Acta Metall. Mater. 43(1), 11–20 (1995)

    Article  Google Scholar 

  • T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  • K. Derrien, J. Fitoussi, G. Guo, D. Baptiste, Prediction of the effective damage properties and failure properties of nonlinear anisotropic discontinuous reinforced composites. Comput. Methods Appl. Mech. Eng. 185, 93–107 (2000)

    Article  MATH  Google Scholar 

  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion and related problem. Proc. R. Soc. Lond. A. 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Finot, Y.L. Shen, A. Needleman, S. Suresh, Micromechanical modeling of reinforcement fracture in particle-reinforced metal-matrix composites. Metall. Mater. Trans. A 25(11), 2403–2420 (1994)

    Article  Google Scholar 

  • S. Ghosh, S. Moorthy, Particle fracture simulation in non-uniform microstructures of metal-matrix composites. Acta Mater. 46(3), 965–982 (1998)

    Article  Google Scholar 

  • C. Gonzalez, J. Llorca, A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage. J. Mech. Phys. Solids 48, 675–692 (2000)

    Article  MATH  Google Scholar 

  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth, part I – yield criterion and flow rules for porous ductile media. ASME J. Eng. Mater. Technol. 99(1), 2–15 (1977)

    Article  Google Scholar 

  • R. Hill, Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  MATH  Google Scholar 

  • M. Hori, S. Nemat-Nasser, Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14, 189–206 (1993)

    Article  Google Scholar 

  • J.W. Ju, T.M. Chen, Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech. 103, 103–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • J.W. Ju, L.Z. Sun, A novel formulation for exterior-point Eshelby’s tensor of an ellipsoidal inclusion. ASME J. Appl. Mech. 66, 570–574 (1999)

    Article  Google Scholar 

  • J.W. Ju, L.Z. Sun, Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities, Part I: micromechanics-based formulation. Int. J. Solids Struct. 38, 183–201 (2001)

    Article  MATH  Google Scholar 

  • J.W. Ju, K.H. Tseng, Effective elastoplastic algorithms for ductile matrix composites. ASCE J. Eng. Mech. 123(3), 260–266 (1997)

    Article  Google Scholar 

  • K. Lee, S. Moorthy, S. Ghosh, Multiple scale computational model for damage in composite materials. Comput. Methods Appl. Mech. Eng. 172, 175–201 (1999)

    Article  MATH  Google Scholar 

  • M. Li, S. Ghosh, O. Richmond, H. Weiland, T.N. Rouns, Three dimensional characterization and modeling of particle reinforced metal matrix composites part II: damage characterization. Mater. Sci. Eng. A 266, 221–240 (1999)

    Article  Google Scholar 

  • H.T. Liu, L.Z. Sun, J.W. Ju, Elastoplastic modeling of progressive interfacial debonding for particle-reinforced metal matrix composites. Acta Mech. 181, 1–17 (2006)

    Article  MATH  Google Scholar 

  • J. Llorca, J.L. Martinez, M. Elices, Reinforcement fracture and tensile ductility in sphere-reinforced metal-matrix composites. Fatigue Fract. Eng. Mater. Struct. 20(5), 689–702 (1997)

    Article  Google Scholar 

  • T. Mochida, M. Taya, M. Obata, Effect of damaged particles on the stiffness of a particle/metal matrix composite. JSME Int. J. Ser. I. Solid Mech. Strength Mater. 34(2), 187–193 (1991)

    Google Scholar 

  • T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • T. Mura, Micromechanics of Defects in Solids, 2nd edn. (Kluwer, Dordrecht, 1987)

    Book  Google Scholar 

  • S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, 2nd edn. (North-Holland, Amsterdam, 1999)

    Google Scholar 

  • H.M. Shodja, A.S. Sarvestani, Elastic fields in double inhomogeneity by the equivalent inclusion method. ASME J. Appl. Mech. 68(1), 3–10 (2001)

    Article  MATH  Google Scholar 

  • D. Steglich, T. Siegmund, W. Brocks, Micromechanical modeling of damage due to particle cracking in reinforced metals. Comput. Mater. Sci. 16(1–4), 404–413 (1999)

    Article  Google Scholar 

  • L.Z. Sun, J.W. Ju, Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities, Part II: applications. Int. J. Solids Struct. 38, 203–225 (2001)

    Article  Google Scholar 

  • L.Z. Sun, H.T. Liu, J.W. Ju, Effect of particle cracking on elastoplastic behavior of metal matrix composites. Int. J. Numer. Method Eng. 56, 2183–2198 (2003)

    Article  MATH  Google Scholar 

  • S. Suresh, A. Mortensen, A. Needleman, Fundamentals of Metal-Matrix Composites (Butterworth-Heinemann Publisher, Boston, 1993)

    Google Scholar 

  • G.P. Tandon, G.J. Weng, A theory of particle-reinforced plasticity. ASME J. Appl. Mech. 55, 126–135 (1988)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984)

    Article  Google Scholar 

  • W. Weibull, A statistical distribution function of wide applicability. ASME J. Appl. Mech. 18, 293–297 (1951)

    MATH  Google Scholar 

  • D.S. Wilkinson, E. Maire, J.D. Embury, The role of heterogeneity on the flow of two-phase materials. Mater. Sci. Eng. A 233(1–2), 145–154 (1997)

    Article  Google Scholar 

  • D.S. Wilkinson, W. Pompe, M. Oeschner, Modeling the mechanical behaviour of heterogeneous multi-phase materials. Prog. Mater. Sci. 46, 379–405 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Z. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sun, L.Z., Liu, H.T., Ju, J.W. (2014). Particle-Cracking Modeling of Metal Matrix Composites. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation