Future Prospects

  • Chapter
  • First Online:
Molecular Biophysics for the Life Sciences

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 6))

  • 2729 Accesses

Abstract

This chapter illustrates the dynamic, evolving nature of molecular biophysics by providing perspectives on future prospects in three major areas: X-ray and neutron scattering, mass spectrometry, and therapeutic drug development. In all three areas, major advances in the biological sciences, development of powerful new experimental and computational tools, and urgent real-world challenges are driving rapid progress. These developments have enabled and encouraged biophysicists to focus increasingly on studying systems of various sizes and the interactions between their components, rather than simply on their isolated constituents. As the examples demonstrate, these interactions are often transient, and may occur in massive macromolecular complexes, between macromolecules, or between macromolecules and ligands. A diverse set of emerging and advancing technologies are likely to spur future developments. These include advances in methods that enable individual molecules to be studied at atomic resolution; high throughput methods, increasing automation, development of massive databases that allow comparison and analysis of data of many types gathered worldwide; and increasingly powerful computational methods that enable ever larger systems to be modeled at high resolution. Finally, the emerging field of synthetic biology will create exciting opportunities to create, explore, and manipulate the biophysics of novel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilokapic S, Schwartz TU (2012) 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol 24:86–91

    Article  PubMed  CAS  Google Scholar 

  2. Corbett KD, Harrison SC (2012) Molecular architecture of the yeast monopolin complex. Cell Rep 1:583–589

    Article  PubMed  CAS  Google Scholar 

  3. Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL, Messerschmidt M, Barty A, White TA, Kassemeyer S, Kirian RA, Seibert MM, Montanez PA, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner SM, Philipp HT, Tate MW, Hromalik M, Koerner LJ, van Bakel N, Morse J, Ghonsalves W, Arnlund D, Bogan MJ, Caleman C, Fromme R, Hampton CY, Hunter MS, Johansson LC, Katona G, Kupitz C, Liang M, Martin AV, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin NA, Schafer D, Defever J, Neutze R, Fromme P, Spence JC, Chapman HN, Schlichting I (2012) High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–364

    Article  PubMed  CAS  Google Scholar 

  4. Petoukhov MV, Svergun DI (2013) Applications of small-angle X-ray scattering to biomacromolecular solutions. Int J Biochem Cell Biol 45(2):429–437

    Article  PubMed  CAS  Google Scholar 

  5. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  PubMed  CAS  Google Scholar 

  6. Lengqvist J, Svensson R, Evergren E, Morgenstern R, Griffiths WJ (2004) Observation of an intact non-covalent homotrimer of detergent-solubilised rat microsomal glutathione transferase 1 by electrospray mass spectrometry. J Biol Chem 279(14):13311–13316, M310958200

    Article  PubMed  CAS  Google Scholar 

  7. Barrera NP, Di Bartolo N, Booth PJ, Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321:243–246

    Article  PubMed  CAS  Google Scholar 

  8. Pan Y, Stocks BB, Brown L, Konermann L (2009) Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry. Anal Chem 81:28–35

    Article  PubMed  CAS  Google Scholar 

  9. Wen JZ, Zhang H, Gross ML, Blankenship RE (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci U S A 106:6134–6139

    Article  PubMed  CAS  Google Scholar 

  10. Sobott F, McCammon MG, Hernandez H, Robinson CV (2005) The flight of macromolecular complexes in a mass spectrometer. Philos Trans A Math Phys Eng Sci 363:379–389, discussion 389–391

    Article  PubMed  CAS  Google Scholar 

  11. Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933

    Article  PubMed  CAS  Google Scholar 

  12. Abzalimov RR, Kaltashov IA (2010) Electrospray ionization mass spectrometry of highly heterogeneous protein systems: protein ion charge state assignment via incomplete charge reduction. Anal Chem 82:7523–7526

    Article  PubMed  CAS  Google Scholar 

  13. Bohrer BC, Mererbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem 1:293–327

    Article  CAS  Google Scholar 

  14. Damen C, Chen W, Chakraborty A, van Oosterhout M, Mazzeo J, Gebler J, Schellens J, Rosing H, Beijnen J (2009) Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J Am Soc Mass Spectrom 20:2021–2033

    Article  PubMed  CAS  Google Scholar 

  15. Bagal D, Zhang H, Schnier PD (2008) Gas-phase proton-transfer chemistry coupled with TOF mass spectrometry and ion mobility-MS for the facile analysis of poly(ethylene glycols) and PEGylated polypeptide conjugates. Anal Chem 80:2408–2418

    Article  PubMed  CAS  Google Scholar 

  16. Collins MO, Choudhary JS (2008) Map** multiprotein complexes by affinity purification and mass spectrometry. Curr Opin Biotechnol 19:324–330

    Article  PubMed  CAS  Google Scholar 

  17. Monti M, Cozzolino M, Cozzolino F, Vitiello G, Tedesco R, Flagiello A, Pucci P (2009) Puzzle of protein complexes in vivo: a present and future challenge for functional proteomics. Expert Rev Proteomics 6:159–169

    Article  PubMed  CAS  Google Scholar 

  18. Terentiev AA, Moldogazieva NT, Shaitan KV (2009) Dynamic proteomics in modeling of the living cell. Protein–protein interactions. Biochemistry (Mosc) 74:1586–1607

    Article  CAS  Google Scholar 

  19. Malik R, Dulla K, Nigg EA, Korner R (2010) From proteome lists to biological impact-tools and strategies for the analysis of large MS data sets. Proteomics 10:1270–1283

    Article  PubMed  CAS  Google Scholar 

  20. Zhou M, Robinson CV (2010) When proteomics meets structural biology. Trends Biochem Sci 35:522–529

    Article  PubMed  CAS  Google Scholar 

  21. Gavin AC, Maeda K, Kuhner S (2011) Recent advances in charting protein–protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 22:42–49

    Article  PubMed  CAS  Google Scholar 

  22. Sardiu ME, Washburn MP (2011) Building protein–protein interaction networks with proteomics and informatics tools. J Biol Chem 286:23645–23651

    Article  PubMed  CAS  Google Scholar 

  23. Sinz A (2010) Investigation of protein–protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 397:3433–3440

    Article  PubMed  CAS  Google Scholar 

  24. Zhu Y, Guo TN, Park JE, Li X, Meng W, Datta A, Bern M, Lim SK, Sze SK (2009) Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting. Mol Cell Proteomics 8:1999–2010

    Article  PubMed  CAS  Google Scholar 

  25. **e J, Schultz PG (2006) A chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol 7:775–782

    Article  PubMed  CAS  Google Scholar 

  26. Narhi L (2012) In: Narhi L (ed) (2013) Biophysical characterization during protein therapeutic development. Springer

    Google Scholar 

  27. Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934

    Article  PubMed  CAS  Google Scholar 

  28. Chen S, Lau H, Brodsky Y, Kleemann GR, Latypov RF (2010) The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies. Protein Sci 19:1191–1204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma M. Allewell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allewell, N.M., Kaltashov, I.A., Narhi, L.O., Rayment, I. (2013). Future Prospects. In: Allewell, N., Narhi, L., Rayment, I. (eds) Molecular Biophysics for the Life Sciences. Biophysics for the Life Sciences, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8548-3_12

Download citation

Publish with us

Policies and ethics

Navigation