The Molecular Convergence of Birdsong and Speech

  • Chapter
  • First Online:
Animal Models of Speech and Language Disorders

Abstract

Songbird vocal learning depends on the anterior forebrain pathway, the organization of which reflects a conserved vertebrate cortico-basal ganglia-thalamocortical loop architecture. We review the involvement of FoxP2 in this circuit, as well as FoxP1 and Cntnap2, both posited to participate alongside FoxP2. In the avian striatum, FoxP2 expression is regulated by singing, highlighting the possibility that developmental verbal dyspraxia arising from human FOXP2 mutation might primarily reflect a deficit in ongoing neural signaling, rather than developmental miswiring. We explore genes co-regulated with FoxP2 during singing and propose that Wnt trafficking and p63 signaling pathways may be crucial to speech and language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krough A (1929) The progress of physiology. Am J Physiol 90(2):243–251

    Google Scholar 

  2. Krebs HA (1975) The August Krogh principle: “For many problems there is an animal on which it can be most conveniently studied”. J Exp Zool 194(1):221–226

    PubMed  CAS  Google Scholar 

  3. Morris D (1954) The reproductive behaviour of the zebra finch (Poephila guttata), with special reference to pseudofemale behaviour and displacement activities. Behaviour 6:271–322

    Google Scholar 

  4. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 80(8):2390–2394

    PubMed  CAS  Google Scholar 

  5. Barnea A (2010) Wild neurogenesis. Brain Behav Evol 75(2):86–87

    PubMed  Google Scholar 

  6. Pytte CL, George S, Korman S, David E, Bogdan D, Kirn JR (2012) Adult neurogenesis is associated with the maintenance of a stereotyped, learned motor behavior. J Neurosci 32(20):7052–7057

    PubMed  CAS  Google Scholar 

  7. Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417(6886):351–358

    PubMed  CAS  Google Scholar 

  8. Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433(7026):638–643

    PubMed  CAS  Google Scholar 

  9. Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419(6902):65–70

    PubMed  CAS  Google Scholar 

  10. Keller GB, Hahnloser RH (2009) Neural processing of auditory feedback during vocal practice in a songbird. Nature 457(7226):187–190

    PubMed  CAS  Google Scholar 

  11. Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290(5492):812–816

    PubMed  CAS  Google Scholar 

  12. Deregnaucourt S, Mitra PP, Feher O, Pytte C, Tchernichovski O (2005) How sleep affects the developmental learning of bird song. Nature 433(7027):710–716

    PubMed  CAS  Google Scholar 

  13. Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of songbird brain. Science 194(4261):211–213

    PubMed  CAS  Google Scholar 

  14. Agate RJ, Grisham W, Wade J, Mann S, Wingfield J, Schanen C et al (2003) Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc Natl Acad Sci U S A 100(8):4873–4878

    PubMed  CAS  Google Scholar 

  15. Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in Zebra Finch eggs. Science 286(5437):126–128

    PubMed  CAS  Google Scholar 

  16. Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300(5616):125–127

    PubMed  CAS  Google Scholar 

  17. Goodson JL, Schrock SE, Klatt JD, Kabelik D, Kingsbury MA (2009) Mesotocin and nonapeptide receptors promote estrildid flocking behavior. Science 325(5942):862–866

    PubMed  CAS  Google Scholar 

  18. Fee MS, Shraiman B, Pesaran B, Mitra PP (1998) The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature 395(6697):67–71

    PubMed  CAS  Google Scholar 

  19. Tchernichovski O, Mitra PP, Lints T, Nottebohm F (2001) Dynamics of the vocal imitation process: how a zebra finch learns its song. Science 291(5513):2564–2569

    PubMed  CAS  Google Scholar 

  20. Vignal C, Mathevon N, Mottin S (2004) Audience drives male songbird response to partner’s voice. Nature 430(6998):448–451

    PubMed  CAS  Google Scholar 

  21. Feher O, Wang H, Saar S, Mitra PP, Tchernichovski O (2009) De novo establishment of wild-type song culture in the zebra finch. Nature 459(7246):564–568

    PubMed  CAS  Google Scholar 

  22. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A et al (2010) The genome of a songbird. Nature 464(7289):757–762

    PubMed  CAS  Google Scholar 

  23. Scharff C, Adam I (2013) Neurogenetics of birdsong. Curr Opin Neurobiol 23(1):29–36

    PubMed  CAS  Google Scholar 

  24. Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F (2009) Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci U S A 106(42):17963–17967

    PubMed  CAS  Google Scholar 

  25. Forstmeier W, Burger C, Temnow K, Deregnaucourt S (2009) The genetic basis of zebra finch vocalizations. Evolution 63(8):2114–2130

    PubMed  Google Scholar 

  26. Okanoya K, Dooling RJ (1987) Strain differences in auditory thresholds in the canary (Serinus canarius). J Comp Psychol 101(2):213–215

    PubMed  CAS  Google Scholar 

  27. Wright TF, Brittan-Powell EF, Dooling RJ, Mundinger PC (2004) Sex-linked inheritance of hearing and song in the Belgian Waterslager canary. Proc Biol Sci 271(suppl 6):S409–S412

    PubMed  Google Scholar 

  28. Brittan-Powell EF, Dooling RJ, Ryals B, Gleich O (2010) Electrophysiological and morphological development of the inner ear in Belgian Waterslager canaries. Hear Res 269(1–2):56–69

    PubMed  Google Scholar 

  29. Bolund E, Martin K, Kempenaers B, Forstmeier W (2010) Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Anim Behav 79(4):947–955

    Google Scholar 

  30. Hemmings NL, Slate J, Birkhead TR (2012) Inbreeding causes early death in a passerine bird. Nat Commun 3:863

    PubMed  CAS  Google Scholar 

  31. Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E et al (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20(4):485–495

    PubMed  Google Scholar 

  32. Oleksyk TK, Pombert JF, Siu D, Mazo-Vargas A, Ramos B, Guiblet W et al (2012) A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education. Gigascience 1(1):14

    PubMed  Google Scholar 

  33. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X et al (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339(6118):456–460

    PubMed  CAS  Google Scholar 

  34. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S et al (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478(7370):476–482

    PubMed  CAS  Google Scholar 

  35. Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP (2013) Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol 5(1):130–139

    PubMed  CAS  Google Scholar 

  36. White SA, Fisher SE, Geschwind DH, Scharff C, Holy TE (2006) Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J Neurosci 26(41):10376–10379

    PubMed  CAS  Google Scholar 

  37. Bolhuis JJ, Okanoya K, Scharff C (2010) Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 11(11):747–759

    PubMed  CAS  Google Scholar 

  38. Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in canary, Serinus-Canarius. J Comp Neurol 165(4):457–486

    PubMed  CAS  Google Scholar 

  39. Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456(7219):189–194

    PubMed  CAS  Google Scholar 

  40. Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W et al (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6(2):151–159

    PubMed  CAS  Google Scholar 

  41. Yu AC, Margoliash D (1996) Temporal hierarchical control of singing in birds. Science 273(5283):1871–1875

    PubMed  CAS  Google Scholar 

  42. Leonardo A, Fee MS (2005) Ensemble coding of vocal control in birdsong. J Neurosci 25(3):652–661

    PubMed  CAS  Google Scholar 

  43. Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W et al (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473(3):377–414

    PubMed  Google Scholar 

  44. Doupe AJ, Perkel DJ, Reiner A, Stern EA (2005) Birdbrains could teach basal ganglia research a new song. Trends Neurosci 28(7):353–363

    PubMed  CAS  Google Scholar 

  45. Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70(1–2):119–136

    PubMed  CAS  Google Scholar 

  46. Graybiel AM (2004) Network-level neuroplasticity in cortico-basal ganglia pathways. Parkinsonism Relat Disord 10(5):293–296

    PubMed  Google Scholar 

  47. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14(2):154–162

    PubMed  CAS  Google Scholar 

  48. Liljeholm M, O’Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16(9):467–475

    PubMed  Google Scholar 

  49. Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E et al (2008) Molecular map** of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 3(3):e1768

    PubMed  Google Scholar 

  50. Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224(4651):901–903

    PubMed  CAS  Google Scholar 

  51. Garcia-Calero E, Scharff C (2013) Calbindin expression in develo** striatum of zebra finches and its relation to the formation of area X. J Comp Neurol 521(2):326–341

    PubMed  CAS  Google Scholar 

  52. Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. Proc Natl Acad Sci U S A 94(8):4097–4102

    PubMed  CAS  Google Scholar 

  53. Farries MA, Perkel DJ (2002) A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22(9):3776–3787

    PubMed  CAS  Google Scholar 

  54. Goldberg JH, Adler A, Bergman H, Fee MS (2010) Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments. J Neurosci 30(20):7088–7098

    PubMed  CAS  Google Scholar 

  55. Carrillo GD, Doupe AJ (2004) Is the songbird Area X striatal, pallidal, or both? An anatomical study. J Comp Neurol 473(3):415–437

    PubMed  Google Scholar 

  56. Leblois A, Wendel BJ, Perkel DJ (2010) Striatal dopamine modulates basal ganglia output and regulates social context-dependent behavioral variability through D1 receptors. J Neurosci 30(16):5730–5743

    PubMed  CAS  Google Scholar 

  57. Luo M, Perkel DJ (1999) A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J Neurosci 19(15):6700–6711

    PubMed  CAS  Google Scholar 

  58. Thorn CA, Atallah H, Howe M, Graybiel AM (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66(5):781–795

    PubMed  CAS  Google Scholar 

  59. Bottjer SW, Alderete TL, Chang D (2010) Conjunction of vocal production and perception regulates expression of the immediate early gene ZENK in a novel cortical region of songbirds. J Neurophysiol 103(4):1833–1842

    PubMed  CAS  Google Scholar 

  60. Bottjer SW, Altenau B (2010) Parallel pathways for vocal learning in basal ganglia of songbirds. Nat Neurosci 13(2):153–155

    PubMed  CAS  Google Scholar 

  61. Olveczky BP (2011) Motoring ahead with rodents. Curr Opin Neurobiol 21(4):571–578

    PubMed  CAS  Google Scholar 

  62. Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11(9):2896–2913

    PubMed  CAS  Google Scholar 

  63. Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol 53(1):51–63

    PubMed  CAS  Google Scholar 

  64. Aronov D, Andalman AS, Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320(5876):630–634

    PubMed  CAS  Google Scholar 

  65. Olveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3(5):e153

    PubMed  Google Scholar 

  66. Olveczky BP, Otchy TM, Goldberg JH, Aronov D, Fee MS (2011) Changes in the neural control of a complex motor sequence during learning. J Neurophysiol 106(1):386–397

    PubMed  Google Scholar 

  67. Veit L, Aronov D, Fee MS (2011) Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds. J Neurophysiol 106(4):1747–1765

    PubMed  Google Scholar 

  68. Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the bird sings: context-dependent gene expression. Neuron 21(4):775–788

    PubMed  CAS  Google Scholar 

  69. Hessler NA, Doupe AJ (1999) Social context modulates singing-related neural activity in the songbird forebrain. Nat Neurosci 2(3):209–211

    PubMed  CAS  Google Scholar 

  70. Kojima S, Doupe AJ (2011) Social performance reveals unexpected vocal competency in young songbirds. Proc Natl Acad Sci U S A 108(4):1687–1692

    PubMed  CAS  Google Scholar 

  71. Kao MH, Wright BD, Doupe AJ (2008) Neurons in a forebrain nucleus required for vocal plasticity rapidly switch between precise firing and variable bursting depending on social context. J Neurosci 28(49):13232–13247

    PubMed  CAS  Google Scholar 

  72. Stepanek L, Doupe AJ (2010) Activity in a cortical-basal ganglia circuit for song is required for social context-dependent vocal variability. J Neurophysiol 104(5):2474–2486

    PubMed  Google Scholar 

  73. Kimpo RR, Doupe AJ (1997) FOS is induced by singing in distinct neuronal populations in a motor network. Neuron 18(2):315–325

    PubMed  CAS  Google Scholar 

  74. Kubikova L, Turner EA, Jarvis ED (2007) The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway. Eur J Neurosci 25(7):2145–2160

    PubMed  Google Scholar 

  75. Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED et al (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24(13):3164–3175

    PubMed  CAS  Google Scholar 

  76. Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA (2004) Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci 24(13):3152–3163

    PubMed  CAS  Google Scholar 

  77. Takahashi K, Liu FC, Hirokawa K, Takahashi H (2003) Expression of Foxp2, a gene involved in speech and language, in the develo** and adult striatum. J Neurosci Res 73(1):61–72

    PubMed  CAS  Google Scholar 

  78. Habas C, Guillevin R, Abanou A (2010) In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum 9(2):167–173

    PubMed  Google Scholar 

  79. Llinas RR (2011) Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol 589(Pt 14):3423–3432

    PubMed  CAS  Google Scholar 

  80. Rauschecker AM, Pringle A, Watkins KE (2008) Changes in neural activity associated with learning to articulate novel auditory pseudowords by covert repetition. Hum Brain Mapp 29(11):1231–1242

    PubMed  Google Scholar 

  81. Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131(Pt 1):50–59

    PubMed  Google Scholar 

  82. Hicks TP, Onodera S (2012) The mammalian red nucleus and its role in motor systems, including the emergence of bipedalism and language. Prog Neurobiol 96(2):165–175

    PubMed  Google Scholar 

  83. Gale SD, Perkel DJ (2010) Anatomy of a songbird basal ganglia circuit essential for vocal learning and plasticity. J Chem Neuroanat 39(2):124–131

    PubMed  Google Scholar 

  84. Teramitsu I, Poopatanapong A, Torrisi S, White SA (2010) Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS One 5(1):e8548

    PubMed  Google Scholar 

  85. Roper A, Zann R (2006) The onset of song learning and song tutor selection in fledgling zebra finches. Ethology 112(5):458–470

    Google Scholar 

  86. Bottjer SW, Glaessner SL, Arnold AP (1985) Ontogeny of brain nuclei controlling song learning and behavior in zebra finches. J Neurosci 5(6):1556–1562

    PubMed  CAS  Google Scholar 

  87. Nordeen EJ, Nordeen KW (1988) Sex and regional differences in the incorporation of neurons born during song learning in zebra finches. J Neurosci 8(8):2869–2874

    PubMed  CAS  Google Scholar 

  88. Rochefort C, He X, Scotto-Lomassese S, Scharff C (2007) Recruitment of FoxP2-expressing neurons to area X varies during song development. Dev Neurobiol 67(6):809–817

    PubMed  CAS  Google Scholar 

  89. Thompson CK, Schwabe F, Schoof A, Mendoza E, Gampe J, Rochefort C et al (2013) Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches. Front Neural Circuits 7:24

    PubMed  CAS  Google Scholar 

  90. Teramitsu I, White SA (2006) FoxP2 regulation during undirected singing in adult songbirds. J Neurosci 26(28):7390–7394

    PubMed  CAS  Google Scholar 

  91. Miller JE, Spiteri E, Condro MC, Dosumu-Johnson RT, Geschwind DH, White SA (2008) Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 100(4):2015–2025

    PubMed  CAS  Google Scholar 

  92. Miller JE, Hilliard AT, White SA (2010) Song practice promotes acute vocal variability at a key stage of sensorimotor learning. PLoS One 5(1):e8592

    PubMed  Google Scholar 

  93. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5(12):e321

    PubMed  Google Scholar 

  94. Tchernichovski O, Nottebohm F (1998) Social inhibition of song imitation among sibling male zebra finches. Proc Natl Acad Sci U S A 95(15):8951–8956

    PubMed  CAS  Google Scholar 

  95. Schulz SB, Haesler S, Scharff C, Rochefort C (2010) Knockdown of FoxP2 alters spine density in Area X of the zebra finch. Genes Brain Behav 9(7):732–740

    PubMed  CAS  Google Scholar 

  96. Foster EF, Bottjer SW (1998) Axonal connections of the high vocal center and surrounding cortical regions in juvenile and adult male zebra finches. J Comp Neurol 397(1):118–138

    PubMed  CAS  Google Scholar 

  97. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM et al (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82(1):150–159

    PubMed  CAS  Google Scholar 

  98. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M et al (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22):2337–2345

    PubMed  CAS  Google Scholar 

  99. Panaitof SC, Abrahams BS, Dong H, Geschwind DH, White SA (2010) Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds. J Comp Neurol 518(11):1995–2018

    PubMed  CAS  Google Scholar 

  100. Wang B, Lin D, Li C, Tucker P (2003) Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem 278(27):24259–24268

    PubMed  CAS  Google Scholar 

  101. Li S, Weidenfeld J, Morrisey EE (2004) Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol 24(2):809–822

    PubMed  CAS  Google Scholar 

  102. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA (2003) Characterization of Foxp2 and Foxp1 mRNA and protein in the develo** and mature brain. J Comp Neurol 460(2):266–279

    PubMed  CAS  Google Scholar 

  103. Hamdan FF, Daoud H, Rochefort D, Piton A, Gauthier J, Langlois M et al (2010) De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet 87(5):671–678

    PubMed  CAS  Google Scholar 

  104. Horn D, Kapeller J, Rivera-Brugues N, Moog U, Lorenz-Depiereux B, Eck S et al (2010) Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat 31(11):E1851–E1860

    PubMed  CAS  Google Scholar 

  105. Palumbo O, D’Agruma L, Minenna AF, Palumbo P, Stallone R, Palladino T et al (2013) 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene 516(1):107–113

    PubMed  CAS  Google Scholar 

  106. Bacon C, Rappold GA (2012) The distinct and overlap** phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet 131(11):1687–1698

    PubMed  CAS  Google Scholar 

  107. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462(7270):213–217

    PubMed  CAS  Google Scholar 

  108. Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J et al (2007) Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in develo** human brain. Am J Hum Genet 81(6):1144–1157

    PubMed  CAS  Google Scholar 

  109. Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM et al (2011) Foxp2 regulates gene networks implicated in neurite outgrowth in the develo** brain. PLoS Genet 7(7):e1002145

    PubMed  CAS  Google Scholar 

  110. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M et al (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137(5):961–971

    PubMed  CAS  Google Scholar 

  111. Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA (2012) Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 73(3):537–552

    PubMed  CAS  Google Scholar 

  112. Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S (2010) Weighted gene coexpression network analysis: state of the art. J Biopharm Stat 20(2):281–300

    PubMed  Google Scholar 

  113. Hilliard AT, Miller JE, Horvath S, White SA (2012) Distinct neurogenomic states in basal ganglia subregions relate differently to singing behavior in songbirds. PLoS Comput Biol 8(11):e1002773

    PubMed  CAS  Google Scholar 

  114. Williams H (2001) Choreography of song, dance and beak movements in the zebra finch (Taeniopygia guttata). J Exp Biol 204(Pt 20):3497–3506

    PubMed  CAS  Google Scholar 

  115. Drnevich J, Replogle KL, Lovell P, Hahn TP, Johnson F, Mast TG et al (2012) Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc Natl Acad Sci U S A 109(suppl 2):17245–17252

    PubMed  CAS  Google Scholar 

  116. Lodewyckx L, Cailotto F, Thysen S, Luyten FP, Lories RJ (2012) Tight regulation of wingless-type signaling in the articular cartilage—subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther 14(1):R16

    PubMed  CAS  Google Scholar 

  117. Desplats PA, Lambert JR, Thomas EA (2008) Functional roles for the striatal-enriched transcription factor, Bcl11b, in the control of striatal gene expression and transcriptional dysregulation in Huntington’s disease. Neurobiol Dis 31(3):298–308

    PubMed  CAS  Google Scholar 

  118. Bonnet C, Andrieux J, Beri-Dexheimer M, Leheup B, Boute O, Manouvrier S et al (2010) Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech. J Med Genet 47(6):377–384

    PubMed  CAS  Google Scholar 

  119. Rosenstierne MW, Vinther J, Mittler G, Larsen L, Mann M, Norrild B (2008) Conserved CPEs in the p53 3′ untranslated region influence mRNA stability and protein synthesis. Anticancer Res 28(5A):2553–2559

    PubMed  CAS  Google Scholar 

  120. White EJ, Brewer G, Wilson GM (2013) Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim Biophys Acta 1829(6–7):680–688

    PubMed  CAS  Google Scholar 

  121. Kantamneni S, Holman D, Wilkinson KA, Correa SA, Feligioni M, Ogden S et al (2008) GISP binding to TSG101 increases GABA receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J Neurochem 107(1):86–95

    PubMed  CAS  Google Scholar 

  122. Soliman MA, Riabowol K (2007) After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 32(11):509–519

    PubMed  CAS  Google Scholar 

  123. Thalappilly S, Feng X, Pastyryeva S, Suzuki K, Muruve D, Larocque D et al (2011) The p53 tumor suppressor is stabilized by inhibitor of growth 1 (ING1) by blocking polyubiquitination. PLoS One 6(6):e21065

    PubMed  CAS  Google Scholar 

  124. Quemener-Redon S, Benech C, Audebert-Bellanger S, Friocourt G, Planes M, Parent P et al (2013) A small de novo 16q24.1 duplication in a woman with severe clinical features. Eur J Med Genet 56(4):211–215

    PubMed  Google Scholar 

  125. Paschou P, Stylianopoulou E, Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T et al (2012) Evaluation of the LIM homeobox genes LHX6 and LHX8 as candidates for Tourette syndrome. Genes Brain Behav 11(4):444–451

    PubMed  CAS  Google Scholar 

  126. Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M et al (2003) The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci U S A 100(15):9005–9010

    PubMed  CAS  Google Scholar 

  127. Abdelmoity AT, Hall JJ, Bittel DC, Yu S (2011) 1.39 Mb inherited interstitial deletion in 12p13.33 associated with developmental delay. Eur J Med Genet 54(2):198–203

    PubMed  Google Scholar 

  128. Tymanskyj SR, Lin S, Gordon-Weeks PR (2010) Evolution of the spatial distribution of MAP1B phosphorylation sites in vertebrate neurons. J Anat 216(6):692–704

    PubMed  CAS  Google Scholar 

  129. Shao M, Lin Y, Liu Z, Zhang Y, Wang L, Liu C et al (2012) GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos. PLoS One 7(5):e36655

    PubMed  CAS  Google Scholar 

  130. Veerappa AM, Saldanha M, Padakannaya P, Ramachandra NB (2013) Family-based genome-wide copy number scan identifies five new genes of dyslexia involved in dendritic spinal plasticity. J Hum Genet, May 16, 2013; doi:10.1038/jhg.2013.47

    Google Scholar 

  131. Hoshina N, Tanimura A, Yamasaki M, Inoue T, Fukabori R, Kuroda T et al (2013) Protocadherin 17 regulates presynaptic assembly in topographic corticobasal ganglia circuits. Neuron 78:839–854

    PubMed  CAS  Google Scholar 

  132. Zhou L, Jones EV, Murai KK (2012) EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem 287(12):9346–9359

    PubMed  CAS  Google Scholar 

  133. Hendriks WJ, Dilaver G, Noordman YE, Kremer B, Fransen JA (2009) PTPRR protein tyrosine phosphatase isoforms and locomotion of vesicles and mice. Cerebellum 8(2):80–88

    PubMed  CAS  Google Scholar 

  134. Krieg AJ, Hammond EM, Giaccia AJ (2006) Functional analysis of p53 binding under differential stresses. Mol Cell Biol 26(19):7030–7045

    PubMed  CAS  Google Scholar 

  135. Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL et al (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8(10):1571–1576

    PubMed  CAS  Google Scholar 

  136. Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA et al (2010) Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 143(5):826–836

    PubMed  CAS  Google Scholar 

  137. Buonincontri R, Bache I, Silahtaroglu A, Elbro C, Nielsen AM, Ullmann R et al (2011) A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1. Behav Genet 41(1):125–133

    PubMed  Google Scholar 

  138. Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A et al (2011) Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2(12):1203–1217

    PubMed  Google Scholar 

  139. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM et al (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145(4):571–583

    PubMed  CAS  Google Scholar 

  140. Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31(12):2670–2684

    PubMed  CAS  Google Scholar 

  141. Rubin JS, Bottaro DP (2007) Loss of secreted frizzled-related protein-1 expression in renal cell carcinoma reveals a critical tumor suppressor function. Clin Cancer Res 13(16):4660–4663

    PubMed  CAS  Google Scholar 

  142. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22(5):717–727

    PubMed  CAS  Google Scholar 

  143. Gibson CJ, Gruen JR (2008) The human lexinome: genes of language and reading. J Commun Disord 41(5):409–420

    PubMed  Google Scholar 

  144. Newbury DF, Monaco AP (2010) Genetic advances in the study of speech and language disorders. Neuron 68(2):309–320

    PubMed  CAS  Google Scholar 

  145. Poelmans G, Buitelaar JK, Pauls DL, Franke B (2011) A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 16(4):365–382

    PubMed  CAS  Google Scholar 

  146. van Amerongen R, Fuerer C, Mizutani M, Nusse R (2012) Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev Biol 369(1):101–114

    PubMed  Google Scholar 

  147. Yang Y (2012) Wnt signaling in development and disease. Cell Biosci 2(1):14

    PubMed  CAS  Google Scholar 

  148. Thevenon J, Callier P, Andrieux J, Delobel B, David A, Sukno S et al (2013) 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur J Hum Genet 21(1):82–88

    PubMed  CAS  Google Scholar 

  149. Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S (2005) Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 120(2):223–235

    PubMed  CAS  Google Scholar 

  150. **e Z, Chen Y, Li Z, Bai G, Zhu Y, Yan R et al (2011) Smad6 promotes neuronal differentiation in the intermediate zone of the dorsal neural tube by inhibition of the Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 108(29):12119–12124

    PubMed  CAS  Google Scholar 

  151. Hu Y, Galkin AV, Wu C, Reddy V, Su AI (2011) CAFEt algorithm reveals Wnt/PCP signature in lung squamous cell carcinoma. PLoS One 6(10):e25807

    PubMed  CAS  Google Scholar 

  152. Glesne D, Huberman E (2006) Smad6 is a protein kinase X phosphorylation substrate and is required for HL-60 cell differentiation. Oncogene 25(29):4086–4098

    PubMed  CAS  Google Scholar 

  153. Carlin D, Sepich D, Grover VK, Cooper MK, Solnica-Krezel L, Inbal A (2012) Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling. Development 139(14):2614–2624

    PubMed  CAS  Google Scholar 

  154. Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L et al (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17(3):368–379

    PubMed  CAS  Google Scholar 

  155. Gerard B, Sanders MA, Visscher DW, Tait L, Shekhar MP (2012) Lysine 394 is a novel Rad6B-induced ubiquitination site on beta-catenin. Biochim Biophys Acta 1823(10):1686–1696

    PubMed  CAS  Google Scholar 

  156. Shekhar MP, Tait L, Gerard B (2006) Essential role of T-cell factor/beta-catenin in regulation of Rad6B: a potential mechanism for Rad6B overexpression in breast cancer cells. Mol Cancer Res 4(10):729–745

    PubMed  CAS  Google Scholar 

  157. Shimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM et al (2003) Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res 63(19):6116–6120

    PubMed  CAS  Google Scholar 

  158. Reinhold MI, Naski MC (2007) Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 282(6):3653–3663

    PubMed  CAS  Google Scholar 

  159. Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S et al (2013) Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 45(3):253–261

    PubMed  CAS  Google Scholar 

  160. Fukata M, Kuroda S, Nakagawa M, Kawajiri A, Itoh N, Shoji I et al (1999) Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J Biol Chem 274(37):26044–26050

    PubMed  CAS  Google Scholar 

  161. Sharma M, Henderson BR (2007) IQ-domain GTPase-activating protein 1 regulates beta-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. J Biol Chem 282(11):8545–8556

    PubMed  CAS  Google Scholar 

  162. Goto T, Sato A, Shimizu M, Adachi S, Satoh K, Iemura S et al (2013) IQGAP1 functions as a modulator of dishevelled nuclear localization in Wnt signaling. PLoS One 8(4):e60865

    PubMed  CAS  Google Scholar 

  163. Liu CF, Parker K, Yao HH (2010) WNT4/beta-catenin pathway maintains female germ cell survival by inhibiting activin betaB in the mouse fetal ovary. PLoS One 5(4):e10382

    PubMed  Google Scholar 

  164. Wuebben EL, Mallanna SK, Cox JL, Rizzino A (2012) Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells. PLoS One 7(4):e34827

    PubMed  CAS  Google Scholar 

  165. Lee HS, Park MH, Yang SJ, Park KC, Kim NS, Kim YS et al (2007) Novel candidate targets of Wnt/beta-catenin signaling in hepatoma cells. Life Sci 80(7):690–698

    PubMed  CAS  Google Scholar 

  166. Sese M, Corominas M, Stocker H, Heino TI, Hafen E, Serras F (2006) The Cdi/TESK1 kinase is required for Sevenless signaling and epithelial organization in the Drosophila eye. J Cell Sci 119(Pt 24):5047–5056

    PubMed  CAS  Google Scholar 

  167. Klapholz-Brown Z, Walmsley GG, Nusse YM, Nusse R, Brown PO (2007) Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PLoS One 2(9):e945

    PubMed  Google Scholar 

  168. Vernes SC, Spiteri E, Nicod J, Groszer M, Taylor JM, Davies KE et al (2007) High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet 81(6):1232–1250

    PubMed  CAS  Google Scholar 

  169. Bonkowsky JL, Wang X, Fujimoto E, Lee JE, Chien CB, Dorsky RI (2008) Domain-specific regulation of foxP2 CNS expression by lef1. BMC Dev Biol 8:103

    PubMed  Google Scholar 

  170. O’Connell MP, Weeraratna AT (2009) Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell Melanoma Res 22(6):724–739

    PubMed  Google Scholar 

  171. Siggberg L, Peippo M, Sipponen M, Miikkulainen T, Shimojima K, Yamamoto T et al (2011) 9q22 Deletion—first familial case. Orphanet J Rare Dis 6:45

    PubMed  Google Scholar 

  172. Lin PI, Chien YL, Wu YY, Chen CH, Gau SS, Huang YS et al (2012) The WNT2 gene polymorphism associated with speech delay inherent to autism. Res Dev Disabil 33(5):1533–1540

    PubMed  Google Scholar 

  173. Allou L, Lambert L, Amsallem D, Bieth E, Edery P, Destree A et al (2012) 14q12 and severe Rett-like phenotypes: new clinical insights and physical map** of FOXG1-regulatory elements. Eur J Hum Genet 20(12):1216–1223

    PubMed  CAS  Google Scholar 

  174. Kortum F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A et al (2011) The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 48(6):396–406

    PubMed  Google Scholar 

  175. Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22(4):323–330

    PubMed  CAS  Google Scholar 

  176. Carri AD, Onorati M, Lelos MJ, Castiglioni V, Faedo A, Menon R et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140(2):301–312

    PubMed  CAS  Google Scholar 

  177. Crespi BJ, Crofts HJ (2012) Association testing of copy number variants in schizophrenia and autism spectrum disorders. J Neurodev Disord 4(1):15

    PubMed  Google Scholar 

  178. Malhotra D, Sebat J (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148(6):1223–1241

    PubMed  CAS  Google Scholar 

  179. Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31(3):241–261; discussion 61–320

    PubMed  Google Scholar 

  180. Kalkman HO (2012) A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism 3(1):10

    PubMed  CAS  Google Scholar 

  181. Okerlund ND, Cheyette BN (2011) Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord 3(2):162–174

    PubMed  Google Scholar 

  182. Bowers JM, Konopka G (2012) The role of the FOXP family of transcription factors in ASD. Dis Markers 33(5):251–260

    PubMed  CAS  Google Scholar 

  183. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589

    PubMed  Google Scholar 

  184. Lancaster MA, Gopal DJ, Kim J, Saleem SN, Silhavy JL, Louie CM et al (2011) Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat Med 17(6):726–731

    PubMed  CAS  Google Scholar 

  185. Pei Y, Brun SN, Markant SL, Lento W, Gibson P, Taketo MM et al (2012) WNT signaling increases proliferation and impairs differentiation of stem cells in the develo** cerebellum. Development 139(10):1724–1733

    PubMed  CAS  Google Scholar 

  186. Selvadurai HJ, Mason JO (2011) Wnt/beta-catenin signalling is active in a highly dynamic pattern during development of the mouse cerebellum. PLoS One 6(8):e23012

    PubMed  CAS  Google Scholar 

  187. French CA, Groszer M, Preece C, Coupe AM, Rajewsky K, Fisher SE (2007) Generation of mice with a conditional Foxp2 null allele. Genesis 45(7):440–446

    PubMed  CAS  Google Scholar 

  188. Fujita E, Tanabe Y, Shiota A, Ueda M, Suwa K, Momoi MY et al (2008) Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A 105(8):3117–3122

    PubMed  CAS  Google Scholar 

  189. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807

    PubMed  Google Scholar 

  190. McGonigle-Chalmers M, Alderson-Day B, Fleming J, Monsen K (2013) Profound expressive language impairment in low functioning children with autism: an investigation of syntactic awareness using a computerised learning task. J Autism Dev Disord 43(9):2062–2081

    Google Scholar 

  191. O’Connor K (2012) Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 36(2):836–854

    PubMed  Google Scholar 

  192. Pickles A, Simonoff E, Conti-Ramsden G, Falcaro M, Simkin Z, Charman T et al (2009) Loss of language in early development of autism and specific language impairment. J Child Psychol Psychiatry 50(7):843–852

    PubMed  Google Scholar 

  193. Ackermann H (2008) Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci 31(6):265–272

    PubMed  CAS  Google Scholar 

  194. Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147

    PubMed  CAS  Google Scholar 

  195. McGraw CM, Samaco RC, Zoghbi HY (2011) Adult neural function requires MeCP2. Science 333(6039):186

    PubMed  CAS  Google Scholar 

  196. Nguyen MV, Du F, Felice CA, Shan X, Nigam A, Mandel G et al (2012) MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci 32(29):10021–10034

    PubMed  CAS  Google Scholar 

  197. Silva AJ, Ehninger D (2009) Adult reversal of cognitive phenotypes in neurodevelopmental disorders. J Neurodev Disord 1(2):150–157

    PubMed  Google Scholar 

  198. Cross I, Delhanty J, Chapman P, Bowles LV, Griffin D, Wolstenholme J et al (1992) An intrachromosomal insertion causing 5q22 deletion and familial adenomatous polyposis coli in two generations. J Med Genet 29(3):175–179

    PubMed  CAS  Google Scholar 

  199. Hodgson SV, Coonar AS, Hanson PJ, Cottrell S, Scriven PN, Jones T et al (1993) Two cases of 5q deletions in patients with familial adenomatous polyposis: possible link with Caroli’s disease. J Med Genet 30(5):369–375

    PubMed  CAS  Google Scholar 

  200. Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5(1):a007898

    PubMed  Google Scholar 

  201. Fukuyama R, Niculaita R, Ng KP, Obusez E, Sanchez J, Kalady M et al (2008) Mutated in colorectal cancer, a putative tumor suppressor for serrated colorectal cancer, selectively represses beta-catenin-dependent transcription. Oncogene 27(46):6044–6055

    PubMed  CAS  Google Scholar 

  202. Ishiguro H, Furukawa Y, Daigo Y, Miyoshi Y, Nagasawa Y, Nishiwaki T et al (2000) Isolation and characterization of human NBL4, a gene involved in the beta-catenin/tcf signaling pathway. Jpn J Cancer Res 91(6):597–603

    PubMed  CAS  Google Scholar 

  203. Pratt T, Davey JW, Nowakowski TJ, Raasumaa C, Rawlik K, McBride D et al (2012) The expression and activity of beta-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neurosci 13:20

    PubMed  CAS  Google Scholar 

  204. Hu J, Prinz WA, Rapoport TA (2011) Weaving the web of ER tubules. Cell 147(6):1226–1231

    PubMed  CAS  Google Scholar 

  205. Renvoise B, Blackstone C (2010) Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol 20(5):531–537

    PubMed  CAS  Google Scholar 

  206. Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21(1):151–159

    PubMed  CAS  Google Scholar 

  207. Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11(2):77–86

    PubMed  CAS  Google Scholar 

  208. Pino D, Choe Y, Pleasure SJ (2011) Wnt5a controls neurite development in olfactory bulb interneurons. ASN Neuro 3(3):e00059

    PubMed  Google Scholar 

  209. Tabatadze N, Tomas C, McGonigal R, Lin B, Schook A, Routtenberg A (2012) Wnt transmembrane signaling and long-term spatial memory. Hippocampus 22(6):1228–1241

    PubMed  CAS  Google Scholar 

  210. Laffin JJ, Raca G, Jackson CA, Strand EA, Jakielski KJ, Shriberg LD (2012) Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genet Med 14(11):928–936

    PubMed  CAS  Google Scholar 

  211. Atcha FA, Syed A, Wu B, Hoverter NP, Yokoyama NN, Ting JH et al (2007) A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol 27(23):8352–8363

    PubMed  CAS  Google Scholar 

  212. Hoverter NP, Ting JH, Sundaresh S, Baldi P, Waterman ML (2012) A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Mol Cell Biol 32(18):3648–3662

    PubMed  CAS  Google Scholar 

  213. Sakakibara S, Nakamura Y, Satoh H, Okano H (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21(20):8091–8107

    PubMed  CAS  Google Scholar 

  214. Wallmen B, Schrempp M, Hecht A (2012) Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/beta-catenin target gene expression. Nucleic Acids Res 40(19):9455–9469

    PubMed  CAS  Google Scholar 

  215. Raca G, Baas BS, Kirmani S, Laffin JJ, Jackson CA, Strand EA et al (2013) Childhood Apraxia of Speech (CAS) in two patients with 16p11.2 microdeletion syndrome. Eur J Hum Genet 21(4):455–459

    PubMed  CAS  Google Scholar 

  216. Kumar RA, Marshall CR, Badner JA, Babatz TD, Mukamel Z, Aldinger KA et al (2009) Association and mutation analyses of 16p11.2 autism candidate genes. PLoS One 4(2):e4582

    PubMed  Google Scholar 

  217. Rosenfeld JA, Cop**er J, Bejjani BA, Girirajan S, Eichler EE, Shaffer LG et al (2010) Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications. J Neurodev Disord 2(1):26–38

    PubMed  Google Scholar 

  218. Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L et al (2012) A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet 49(10):660–668

    PubMed  CAS  Google Scholar 

  219. Blaker-Lee A, Gupta S, McCammon JM, De Rienzo G, Sive H (2012) Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 5(6):834–851

    PubMed  CAS  Google Scholar 

  220. Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S et al (2012) KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485(7398):363–367

    PubMed  CAS  Google Scholar 

  221. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 9(5):R63

    PubMed  Google Scholar 

  222. Wang Z, Chen H (2009) Amino acid limitation induces down-regulation of WNT5a at transcriptional level. Biochem Biophys Res Commun 378(4):789–794

    PubMed  CAS  Google Scholar 

  223. Hofmann M, Schuster-Gossler K, Watabe-Rudolph M, Aulehla A, Herrmann BG, Gossler A (2004) WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev 18(22):2712–2717

    PubMed  CAS  Google Scholar 

  224. Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragnol D et al (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19(22):6121–6130

    PubMed  CAS  Google Scholar 

  225. Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lecluse Y, Almouzni G et al (1998) Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA. Mol Cell Biol 18(9):5546–5556

    PubMed  CAS  Google Scholar 

  226. Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27(2):183–196

    PubMed  CAS  Google Scholar 

  227. Kim DS, Hahn Y (2011) Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence. Bioinformatics 27(18):2494–2501

    PubMed  CAS  Google Scholar 

  228. Hilger M, Mann M (2012) Triple SILAC to determine stimulus specific interactions in the Wnt pathway. J Proteome Res 11(2):982–994

    PubMed  CAS  Google Scholar 

  229. Lee KH, Johmura Y, Yu LR, Park JE, Gao Y, Bang JK et al (2012) Identification of a novel Wnt5a-CK1varepsilon-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J 31(14):3104–3117

    PubMed  CAS  Google Scholar 

  230. Zhang Y, Wang F, Han L, Wu Y, Li S, Yang X et al (2011) GABARAPL1 negatively regulates Wnt/beta-catenin signaling by mediating Dvl2 degradation through the autophagy pathway. Cell Physiol Biochem 27(5):503–512

    PubMed  CAS  Google Scholar 

  231. Kumar P, Yadav VK, Baral A, Saha D, Chowdhury S (2011) Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide. Nucleic Acids Res 39(18):8005–8016

    PubMed  CAS  Google Scholar 

  232. Li J, Yang Y, Jiang B, Zhang X, Zou Y, Gong Y (2010) Sp1 and KLF15 regulate basal transcription of the human LRP5 gene. BMC Genet 11:12

    PubMed  Google Scholar 

  233. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115

    PubMed  Google Scholar 

  234. Balikova A, Jaager K, Viil J, Maimets T, Kadaja-Saarepuu L (2012) Leukocyte marker CD43 promotes cell growth in co-operation with beta-catenin in non-hematopoietic cancer cells. Int J Oncol 41(1):299–309

    PubMed  CAS  Google Scholar 

  235. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232

    PubMed  CAS  Google Scholar 

  236. Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC (2005) Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26(7):898–915

    PubMed  CAS  Google Scholar 

  237. Scott EL, Brann DW (2013) Estrogen regulation of Dkk1 and Wnt/beta-Catenin signaling in neurodegenerative disease. Brain Res 1514:63–74

    PubMed  CAS  Google Scholar 

  238. Wandosell F, Varea O, Arevalo MA, Garcia-Segura LM (2012) Oestradiol regulates beta-catenin-mediated transcription in neurones. J Neuroendocrinol 24(1):191–194

    PubMed  CAS  Google Scholar 

  239. Schlinger BA, Saldanha CJ (2005) Songbirds: a novel perspective on estrogens and the aging brain. Age (Dordr) 27(4):287–296

    CAS  Google Scholar 

  240. Ball GF, Balthazart J (2010) Seasonal and hormonal modulation of neurotransmitter systems in the song control circuit. J Chem Neuroanat 39(2):82–95

    PubMed  CAS  Google Scholar 

  241. Grisham W, Arnold AP (1995) A direct comparison of the masculinizing effects of testosterone, androstenedione, estrogen, and progesterone on the development of the zebra finch song system. J Neurobiol 26(2):163–170

    PubMed  CAS  Google Scholar 

  242. Grisham W, Lee J, Park SH, Mankowski JL, Arnold AP (2008) A dose–response study of estradiol’s effects on the develo** zebra finch song system. Neurosci Lett 445(2):158–161

    PubMed  CAS  Google Scholar 

  243. Remage-Healey L, Saldanha CJ, Schlinger BA (2011) Estradiol synthesis and action at the synapse: evidence for “synaptocrine” signaling. Front Endocrinol (Lausanne) 2:28

    Google Scholar 

  244. Kelly MJ, Ronnekleiv OK (2009) Control of CNS neuronal excitability by estrogens via membrane-initiated signaling. Mol Cell Endocrinol 308(1–2):17–25

    PubMed  CAS  Google Scholar 

  245. Laughlin GA, Kritz-Silverstein D, Barrett-Connor E (2010) Endogenous oestrogens predict 4-year decline in verbal fluency in postmenopausal women: the Rancho Bernardo Study. Clin Endocrinol (Oxf) 72(1):99–106

    CAS  Google Scholar 

  246. Rees JM, Regunath G, Whiteside SP, Wadnerkar MB, Cowell PE (2008) Adaptation of wavelet transform analysis to the investigation of biological variations in speech signals. Med Eng Phys 30(7):865–871

    PubMed  Google Scholar 

  247. Anthoni H, Sucheston L, Lewis B, Tapia-Páez I, Fan X, Zucchelli M et al (2012) The Aromatase Gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language. Behav Genet 42(4):509–527

    PubMed  Google Scholar 

  248. Schumacher J, Hoffmann P, Schmal C, Schulte-Korne G, Nothen MM (2007) Genetics of dyslexia: the evolving landscape. J Med Genet 44(5):289–297

    PubMed  CAS  Google Scholar 

  249. Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B, Lyytinen H et al (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci 100(20):11553–11558

    PubMed  CAS  Google Scholar 

  250. Massinen S, Tammimies K, Tapia-Páez I, Matsson H, Hokkanen M-E, Söderberg O et al (2009) Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Hum Mol Genet 18(15):2802–2812

    PubMed  CAS  Google Scholar 

  251. Tammimies K, Tapia-Paez I, Ruegg J, Rosin G, Kere J, Gustafsson JA et al (2012) The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor beta and DNA methylation. Mol Endocrinol 26(4):619–629

    PubMed  CAS  Google Scholar 

  252. Manning JT, Bundred PE (2000) The ratio of 2nd to 4th digit length: a new predictor of disease predisposition? Med Hypotheses 54(5):855–857

    PubMed  CAS  Google Scholar 

  253. Stoodley CJ, Stein JF (2013) Cerebellar function in developmental dyslexia. Cerebellum 12(2):267–276

    PubMed  Google Scholar 

  254. Tsutsui K (2008) Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol 37(2–3):116–125

    PubMed  CAS  Google Scholar 

  255. Boets B, De Smedt B, Wouters J, Lemay K, Ghesquiere P (2007) No relation between 2D:4D fetal testosterone marker and dyslexia. Neuroreport 18(14):1487–1491

    PubMed  CAS  Google Scholar 

  256. van Gelder M, Tijms J, Hoeks J (2005) Second to fourth digit ratio and dyslexia: no evidence for an association between reading disabilities and the 2D:4D ratio. Dev Med Child Neurol 47(10):718; author reply 9

    PubMed  Google Scholar 

  257. Hanson BJ, Hong W (2003) Evidence for a role of SNX16 in regulating traffic between the early and later endosomal compartments. J Biol Chem 278(36):34617–34630

    PubMed  CAS  Google Scholar 

  258. Brankatschk B, Pons V, Parton RG, Gruenberg J (2011) Role of SNX16 in the dynamics of tubulo-cisternal membrane domains of late endosomes. PLoS One 6(7):e21771

    PubMed  CAS  Google Scholar 

  259. Rodal AA, Blunk AD, Akbergenova Y, Jorquera RA, Buhl LK, Littleton JT (2011) A presynaptic endosomal trafficking pathway controls synaptic growth signaling. J Cell Biol 193(1):201–217

    PubMed  CAS  Google Scholar 

  260. Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15(2):68–75

    PubMed  CAS  Google Scholar 

  261. Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20(4):427–436

    PubMed  CAS  Google Scholar 

  262. Cullen PJ, Korswagen HC (2012) Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14(1):29–37

    CAS  Google Scholar 

  263. Zhang P, Wu Y, Belenkaya TY, Lin X (2011) SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 21(12):1677–1690

    PubMed  CAS  Google Scholar 

  264. Vervoort VS, Viljoen D, Smart R, Suthers G, DuPont BR, Abbott A et al (2002) Sorting nexin 3 (SNX3) is disrupted in a patient with a translocation t(6;13)(q21;q12) and microcephaly, microphthalmia, ectrodactyly, prognathism (MMEP) phenotype. J Med Genet 39(12):893–899

    PubMed  CAS  Google Scholar 

  265. Harbour ME, Breusegem SY, Seaman MN (2012) Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem J 442(1):209–220

    PubMed  CAS  Google Scholar 

  266. Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC et al (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13(8):914–923

    PubMed  CAS  Google Scholar 

  267. Zerem A, Vinkler C, Michelson M, Leshinsky-Silver E, Lerman-Sagie T, Lev D (2011) Mosaic marker chromosome 16 resulting in 16q11.2-q12.1 gain in a child with intellectual disability, microcephaly, and cerebellar cortical dysplasia. Am J Med Genet A 155A(12):2991–2996

    PubMed  Google Scholar 

  268. Finelli P, Sirchia SM, Masciadri M, Crippa M, Recalcati MP, Rusconi D et al (2012) Juxtaposition of heterochromatic and euchromatic regions by chromosomal translocation mediates a heterochromatic long-range position effect associated with a severe neurological phenotype. Mol Cytogenet 5:16

    PubMed  CAS  Google Scholar 

  269. Payen E, Verkerk T, Michalovich D, Dreyer SD, Winterpacht A, Lee B et al (1998) The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains. J Biol Chem 273(15):9099–9109

    PubMed  CAS  Google Scholar 

  270. Tebbenkamp AT, Borchelt DR (2010) Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas. PLoS One 5(10):e13675

    PubMed  Google Scholar 

  271. Nakajima O, Nakamura F, Yamashita N, Tomita Y, Suto F, Okada T et al (2006) FKBP133: a novel mouse FK506-binding protein homolog alters growth cone morphology. Biochem Biophys Res Commun 346(1):140–149

    PubMed  CAS  Google Scholar 

  272. Jia D, Gomez TS, Billadeau DD, Rosen MK (2012) Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell 23(12):2352–2361

    PubMed  CAS  Google Scholar 

  273. Voineagu I, Huang L, Winden K, Lazaro M, Haan E, Nelson J et al (2012) CCDC22: a novel candidate gene for syndromic X-linked intellectual disability. Mol Psychiatry 17(1):4–7

    PubMed  CAS  Google Scholar 

  274. Hettema EH, Lewis MJ, Black MW, Pelham HR (2003) Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22(3):548–557

    PubMed  CAS  Google Scholar 

  275. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS et al (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    PubMed  CAS  Google Scholar 

  276. Oliveira DL, Nakayasu ES, Joffe LS, Guimaraes AJ, Sobreira TJ, Nosanchuk JD et al (2010) Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 5(6):e11113

    PubMed  Google Scholar 

  277. Caballe A, Martin-Serrano J (2011) ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 12(10):1318–1326

    PubMed  CAS  Google Scholar 

  278. Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200(4):367–371

    PubMed  CAS  Google Scholar 

  279. Hanson PI, Cashikar A (2012) Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28:337–362

    PubMed  CAS  Google Scholar 

  280. Katoh K, Shibata H, Hatta K, Maki M (2004) CHMP4b is a major binding partner of the ALG-2-interacting protein Alix among the three CHMP4 isoforms. Arch Biochem Biophys 421(1):159–165

    PubMed  CAS  Google Scholar 

  281. McCullough J, Fisher RD, Whitby FG, Sundquist WI, Hill CP (2008) ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci U S A 105(22):7687–7691

    PubMed  CAS  Google Scholar 

  282. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304

    PubMed  CAS  Google Scholar 

  283. Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14(10):1036–1045

    PubMed  CAS  Google Scholar 

  284. Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y et al (2012) Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 287(20):16820–16834

    PubMed  CAS  Google Scholar 

  285. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N et al (2009) Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139(2):393–404

    PubMed  CAS  Google Scholar 

  286. Chatellard-Causse C, Blot B, Cristina N, Torch S, Missotten M, Sadoul R (2002) Alix (ALG-2-interacting protein X), a protein involved in apoptosis, binds to endophilins and induces cytoplasmic vacuolization. J Biol Chem 277(32):29108–29115

    PubMed  CAS  Google Scholar 

  287. Boucrot E, Pick A, Camdere G, Liska N, Evergren E, McMahon HT et al (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149(1):124–136

    PubMed  CAS  Google Scholar 

  288. Palumbo O, Palumbo P, Palladino T, Stallone R, Miroballo M, Piemontese MR et al (2012) An emerging phenotype of interstitial 15q25.2 microdeletions: clinical report and review. Am J Med Genet A 158A(12):3182–3189

    PubMed  Google Scholar 

  289. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I et al (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143(7):1136–1148

    PubMed  CAS  Google Scholar 

  290. Niehrs C, Acebron SP (2010) Wnt signaling: multivesicular bodies hold GSK3 captive. Cell 143(7):1044–1046

    PubMed  CAS  Google Scholar 

  291. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190(6):1079–1091

    PubMed  CAS  Google Scholar 

  292. Verweij FJ, Middeldorp JM, Pegtel DM (2012) Intracellular signaling controlled by the endosomal-exosomal pathway. Commun Integr Biol 5(1):88–93

    PubMed  CAS  Google Scholar 

  293. Fumoto K, Kikuchi K, Gon H, Kikuchi A (2012) Wnt5a signaling controls cytokinesis by correctly positioning ESCRT-III at the midbody. J Cell Sci 125(Pt 20):4822–4832

    PubMed  CAS  Google Scholar 

  294. Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM, D’Avino PP (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2(5):120070

    PubMed  Google Scholar 

  295. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336(6078):220–225

    PubMed  CAS  Google Scholar 

  296. Petronczki M, Uhlmann F (2012) Cell biology. ESCRTing DNA at the cleavage site during cytokinesis. Science 336(6078):166–167

    PubMed  CAS  Google Scholar 

  297. Li WM, Webb SE, Lee KW, Miller AL (2006) Recruitment and SNARE-mediated fusion of vesicles in furrow membrane remodeling during cytokinesis in zebrafish embryos. Exp Cell Res 312(17):3260–3275

    PubMed  Google Scholar 

  298. Krepischi-Santos AC, Rajan D, Temple IK, Shrubb V, Crolla JA, Huang S et al (2009) Constitutional haploinsufficiency of tumor suppressor genes in mentally retarded patients with microdeletions in 17p13.1. Cytogenet Genome Res 125(1):1–7

    PubMed  CAS  Google Scholar 

  299. Shlien A, Baskin B, Achatz MI, Stavropoulos DJ, Nichols KE, Hudgins L et al (2010) A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am J Hum Genet 87(5):631–642

    PubMed  CAS  Google Scholar 

  300. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66(9):4795–4801

    PubMed  CAS  Google Scholar 

  301. Yu X, Riley T, Levine AJ (2009) The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J 276(8):2201–2212

    PubMed  CAS  Google Scholar 

  302. Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F (2013) Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 133:1631–1642

    PubMed  CAS  Google Scholar 

  303. Devillard F, Guinchat V, Moreno-De-Luca D, Tabet AC, Gruchy N, Guillem P et al (2010) Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism. Am J Med Genet A 152A(9):2346–2354

    PubMed  Google Scholar 

  304. Loomis CA, Kimmel RA, Tong CX, Michaud J, Joyner AL (1998) Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125(6):1137–1148

    PubMed  CAS  Google Scholar 

  305. Bachar-Dahan L, Goltzmann J, Yaniv A, Gazit A (2006) Engrailed-1 negatively regulates beta-catenin transcriptional activity by destabilizing beta-catenin via a glycogen synthase kinase-3beta-independent pathway. Mol Biol Cell 17(6):2572–2580

    PubMed  CAS  Google Scholar 

  306. Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30(30):10015–10024

    PubMed  CAS  Google Scholar 

  307. Kuemerle B, Gulden F, Cherosky N, Williams E, Herrup K (2007) The mouse Engrailed genes: a window into autism. Behav Brain Res 176(1):121–132

    PubMed  CAS  Google Scholar 

  308. Inuzuka T, Inokawa A, Chen C, Kizu K, Narita H, Shibata H et al (2013) ALG-2-interacting Tubby-like protein superfamily member PLSCR3 is secreted by exosomal pathway and taken up by recipient cultured cells. Biosci Rep 33(2):art:e00026.doi:10.1042/BSR20120123

  309. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208

    PubMed  CAS  Google Scholar 

  310. Shibata H, Suzuki H, Kakiuchi T, Inuzuka T, Yoshida H, Mizuno T et al (2008) Identification of Alix-type and Non-Alix-type ALG-2-binding sites in human phospholipid scramblase 3: differential binding to an alternatively spliced isoform and amino acid-substituted mutants. J Biol Chem 283(15):9623–9632

    PubMed  CAS  Google Scholar 

  311. Gonzalez LJ, Gibbons E, Bailey RW, Fairbourn J, Nguyen T, Smith SK et al (2009) The influence of membrane physical properties on microvesicle release in human erythrocytes. PMC Biophys 2(1):7

    PubMed  Google Scholar 

  312. Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(1):33–47

    PubMed  CAS  Google Scholar 

  313. Close P, Gillard M, Ladang A, Jiang Z, Papuga J, Hawkes N et al (2012) DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J Biol Chem 287(39):32535–32545

    PubMed  CAS  Google Scholar 

  314. Creppe C, Buschbeck M (2011) Elongator: an ancestral complex driving transcription and migration through protein acetylation. J Biomed Biotechnol 2011:924898

    PubMed  Google Scholar 

  315. Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17(6):841–853

    PubMed  CAS  Google Scholar 

  316. Yuan J, Tang W, Luo K, Chen X, Gu X, Wan B et al (2006) Cloning and characterization of the human gene DERP6, which activates transcriptional activities of p53. Mol Biol Rep 33(3):151–158

    PubMed  CAS  Google Scholar 

  317. Tanaka SS, Nakane A, Yamaguchi YL, Terabayashi T, Abe T, Nakao K et al (2013) Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8(3):e57428

    PubMed  CAS  Google Scholar 

  318. Han S, Bahmanyar S, Zhang P, Grishin N, Oegema K, Crooke R et al (2012) Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J Biol Chem 287(5):3123–3137

    PubMed  CAS  Google Scholar 

  319. Kim Y, Gentry MS, Harris TE, Wiley SE, Lawrence JC Jr, Dixon JE (2007) A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc Natl Acad Sci U S A 104(16):6596–6601

    PubMed  CAS  Google Scholar 

  320. Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci U S A 107(41):17539–17544

    PubMed  CAS  Google Scholar 

  321. Michaillat L, Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160

    PubMed  CAS  Google Scholar 

  322. Sasser T, Qiu QS, Karunakaran S, Padolina M, Reyes A, Flood B et al (2012) Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. J Biol Chem 287(3):2221–2236

    PubMed  CAS  Google Scholar 

  323. Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI (2012) MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle 11(7):1273–1281

    PubMed  CAS  Google Scholar 

  324. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY et al (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4(197):ra71

    PubMed  Google Scholar 

  325. Williams CA, Driscoll DJ, Dagli AI (2010) Clinical and genetic aspects of Angelman syndrome. Genet Med 12(7):385–395

    PubMed  CAS  Google Scholar 

  326. Beaudenon S, Huibregtse JM (2008) HPV E6, E6AP and cervical cancer. BMC Biochem 9(suppl 1):S4

    PubMed  Google Scholar 

  327. Levav-Cohen Y, Wolyniec K, Alsheich-Bartok O, Chan AL, Woods SJ, Jiang YH et al (2012) E6AP is required for replicative and oncogene-induced senescence in mouse embryo fibroblasts. Oncogene 31(17):2199–2209

    PubMed  CAS  Google Scholar 

  328. Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD et al (2003) Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 17(4):488–501

    PubMed  CAS  Google Scholar 

  329. Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE et al (2011) A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195(3):417–433

    PubMed  CAS  Google Scholar 

  330. Lichtig H, Gilboa DA, Jackman A, Gonen P, Levav-Cohen Y, Haupt Y et al (2010) HPV16 E6 augments Wnt signaling in an E6AP-dependent manner. Virology 396(1):47–58

    PubMed  CAS  Google Scholar 

  331. Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera B (2008) Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med 1(1):10

    PubMed  Google Scholar 

  332. Sapp M, Bienkowska-Haba M (2009) Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J 276(24):7206–7216

    PubMed  CAS  Google Scholar 

  333. Straight SW, Herman B, McCance DJ (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol 69(5):3185–3192

    PubMed  CAS  Google Scholar 

  334. Suprynowicz FA, Krawczyk E, Hebert JD, Sudarshan SR, Simic V, Kamonjoh CM et al (2010) The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol 84(20):10619–10629

    PubMed  CAS  Google Scholar 

  335. Scheffer KD, Gawlitza A, Spoden GA, Zhang XA, Lambert C, Berditchevski F et al (2013) Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J Virol 87(6):3435–3446

    PubMed  CAS  Google Scholar 

  336. Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C et al (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16—involvement of tetraspanin-enriched microdomains (TEMs). PLoS One 3(10):e3313

    PubMed  Google Scholar 

  337. Bergant M, Banks L (2013) SNX17 facilitates infection with diverse papillomavirus types. J Virol 87(2):1270–1273

    PubMed  CAS  Google Scholar 

  338. Bergant Marusic M, Ozbun MA, Campos SK, Myers MP, Banks L (2012) Human papillomavirus L2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic 13(3):455–467

    PubMed  Google Scholar 

  339. Hasegawa M, Furuya M, Kasuya Y, Nishiyama M, Sugiura T, Nikaido T et al (2007) CD151 dynamics in carcinoma-stroma interaction: integrin expression, adhesion strength and proteolytic activity. Lab Invest 87(9):882–892

    PubMed  CAS  Google Scholar 

  340. Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13(7):857–861

    PubMed  CAS  Google Scholar 

  341. Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149(4):969–982

    PubMed  CAS  Google Scholar 

  342. Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G et al (2009) Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 20(1):481–497

    PubMed  CAS  Google Scholar 

  343. Farfan P, Lee J, Larios J, Sotelo P, Bu G, Marzolo MP (2013) A sorting nexin 17-binding domain within the LRP1 cytoplasmic tail mediates receptor recycling through the basolateral sorting endosome. Traffic 14(7):823–838

    PubMed  CAS  Google Scholar 

  344. McCabe KL, Bronner M (2011) Tetraspanin, CD151, is required for maintenance of trigeminal placode identity. J Neurochem 117(2):221–230

    PubMed  CAS  Google Scholar 

  345. Horton AC, Ehlers MD (2003) Neuronal polarity and trafficking. Neuron 40(2):277–295

    PubMed  CAS  Google Scholar 

  346. Lasiecka ZM, Winckler B (2011) Mechanisms of polarized membrane trafficking in neurons—focusing in on endosomes. Mol Cell Neurosci 48(4):278–287

    PubMed  CAS  Google Scholar 

  347. Terrand J, Bruban V, Zhou L, Gong W, El Asmar Z, May P et al (2009) LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem 284(1):381–388

    PubMed  CAS  Google Scholar 

  348. Woldt E, Terrand J, Mlih M, Matz RL, Bruban V, Coudane F et al (2012) The nuclear hormone receptor PPARgamma counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nat Commun 3:1077

    PubMed  Google Scholar 

  349. Krawczyk E, Hanover JA, Schlegel R, Suprynowicz FA (2008) Karyopherin beta3: a new cellular target for the HPV-16 E5 oncoprotein. Biochem Biophys Res Commun 371(4):684–688

    PubMed  CAS  Google Scholar 

  350. Hansen CN, Ketabi Z, Rosenstierne MW, Palle C, Boesen HC, Norrild B (2009) Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS 117(1):53–59

    PubMed  CAS  Google Scholar 

  351. Chao HW, Lai YT, Lu YL, Lin CL, Mai W, Huang YS (2012) NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res 40(17):8484–8498

    PubMed  CAS  Google Scholar 

  352. Peng SC, Lai YT, Huang HY, Huang HD, Huang YS (2010) A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons. Nucleic Acids Res 38(21):7446–7457

    PubMed  CAS  Google Scholar 

  353. Spangle JM, Munger K (2013) The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 9(3):e1003237

    PubMed  CAS  Google Scholar 

  354. Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A et al (2011) Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell 147(6):1369–1383

    PubMed  CAS  Google Scholar 

  355. Vogler C, Spalek K, Aerni A, Demougin P, Muller A, Huynh KD et al (2009) CPEB3 is associated with human episodic memory. Front Behav Neurosci 3:4

    PubMed  Google Scholar 

  356. Condon KH, Ho J, Robinson CG, Hanus C, Ehlers MD (2013) The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation. J Neurosci 33(9):3799–3814

    PubMed  CAS  Google Scholar 

  357. Ohgaki R, van IJzendoorn SC, Matsushita M, Hoekstra D, Kanazawa H (2011) Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50(4):443–450

    PubMed  CAS  Google Scholar 

  358. Schwede M, Garbett K, Mirnics K, Geschwind DH, Morrow EM (2013) Genes for endosomal NHE6 and NHE9 are misregulated in autism brains. Mol Psychiatry advance online publication 19 March 2013; doi:10.1038/mp.2013.28

  359. Jeong KW, Kim HZ, Kim S, Kim YS, Choe J (2007) Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation. Oncogene 26(4):487–499

    PubMed  CAS  Google Scholar 

  360. Cheng J, Cebotaru V, Cebotaru L, Guggino WB (2010) Syntaxin 6 and CAL mediate the degradation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 21(7):1178–1187

    PubMed  CAS  Google Scholar 

  361. Cheng J, Moyer BD, Milewski M, Loffing J, Ikeda M, Mickle JE et al (2002) A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem 277(5):3520–3529

    PubMed  CAS  Google Scholar 

  362. Haggie PM, Verkman AS (2009) Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol Physiol 296(6):L859–L867

    PubMed  CAS  Google Scholar 

  363. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330):70–73

    PubMed  CAS  Google Scholar 

  364. Dosanjh A, Muchmore EA (2009) Expression of DeltaF508 cystic fibrosis transmembrane regulator (CFTR) decreases membrane sialylation. Open Respir Med J 3:79–84

    PubMed  CAS  Google Scholar 

  365. Rhim AD, Stoykova L, Glick MC, Scanlin TF (2001) Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj J 18(9):649–659

    PubMed  CAS  Google Scholar 

  366. Gentzsch M, Cui L, Mengos A, Chang XB, Chen JH, Riordan JR (2003) The PDZ-binding chloride channel ClC-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J Biol Chem 278(8):6440–6449

    PubMed  CAS  Google Scholar 

  367. LaLonde DP, Bretscher A (2009) The scaffold protein PDZK1 undergoes a head-to-tail intramolecular association that negatively regulates its interaction with EBP50. Biochemistry 48(10):2261–2271

    PubMed  CAS  Google Scholar 

  368. Wheeler DS, Barrick SR, Grubisha MJ, Brufsky AM, Friedman PA, Romero G (2011) Direct interaction between NHERF1 and Frizzled regulates beta-catenin signaling. Oncogene 30(1):32–42

    PubMed  CAS  Google Scholar 

  369. Yao R, Maeda T, Takada S, Noda T (2001) Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commun 286(4):771–778

    PubMed  CAS  Google Scholar 

  370. Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10(10):1135–1145

    PubMed  CAS  Google Scholar 

  371. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T et al (2008) Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 40(12):1466–1471

    PubMed  CAS  Google Scholar 

  372. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 359(16):1685–1699

    PubMed  CAS  Google Scholar 

  373. Rosenfeld JA, Traylor RN, Schaefer GB, McPherson EW, Ballif BC, Klopocki E et al (2012) Proximal microdeletions and microduplications of 1q21.1 contribute to variable abnormal phenotypes. Eur J Hum Genet 20(7):754–761

    PubMed  CAS  Google Scholar 

  374. Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K et al (2008) SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet 82(4):1003–1010

    PubMed  CAS  Google Scholar 

  375. Schroer RJ, Holden KR, Tarpey PS, Matheus MG, Griesemer DA, Friez MJ et al (2010) Natural history of Christianson syndrome. Am J Med Genet A 152A(11):2775–2783

    PubMed  Google Scholar 

  376. Miao S, Chen R, Ye J, Tan GH, Li S, Zhang J et al (2013) The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons. J Neurosci 33(1):327–333

    PubMed  CAS  Google Scholar 

  377. Gulesserian T, Engidawork E, Fountoulakis M, Lubec G (2007) Manifold decrease of sialic acid synthase in fetal Down syndrome brain. Amino Acids 32(1):141–144

    PubMed  CAS  Google Scholar 

  378. Coombs GS, Yu J, Canning CA, Veltri CA, Covey TM, Cheong JK et al (2010) WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci 123(Pt 19):3357–3367

    PubMed  CAS  Google Scholar 

  379. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D et al (2010) Requirement of prorenin receptor and vacuolar H+−ATPase-mediated acidification for Wnt signaling. Science 327(5964):459–463

    PubMed  CAS  Google Scholar 

  380. Herr P, Basler K (2012) Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol 361(2):392–402

    PubMed  CAS  Google Scholar 

  381. Proffitt KD, Virshup DM (2012) Precise regulation of porcupine activity is required for physiological Wnt signaling. J Biol Chem 287(41):34167–34178

    PubMed  CAS  Google Scholar 

  382. Giorda R, Bonaglia MC, Beri S, Fichera M, Novara F, Magini P et al (2009) Complex segmental duplications mediate a recurrent dup(X)(p11.22-p11.23) associated with mental retardation, speech delay, and EEG anomalies in males and females. Am J Hum Genet 85(3):394–400

    PubMed  CAS  Google Scholar 

  383. Jung H, Lee SK, Jho EH (2011) Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. Biochem J 436(2):263–269

    PubMed  CAS  Google Scholar 

  384. Schneider E, Mayer S, El Hajj N, Jensen LR, Kuss AW, Zischler H et al (2012) Methylation and expression analyses of the 7q autism susceptibility locus genes MEST, COPG2, and TSGA14 in human and anthropoid primate cortices. Cytogenet Genome Res 136(4):278–287

    PubMed  CAS  Google Scholar 

  385. Korvatska O, Estes A, Munson J, Dawson G, Bekris LM, Kohen R et al (2011) Mutations in the TSGA14 gene in families with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 156B(3):303–311

    PubMed  CAS  Google Scholar 

  386. Yamada T, Mitsuya K, Kayashima T, Yamasaki K, Ohta T, Yoshiura K et al (2004) Imprinting analysis of 10 genes and/or transcripts in a 1.5-Mb MEST-flanking region at human chromosome 7q32. Genomics 83(3):402–412

    PubMed  CAS  Google Scholar 

  387. MacIsaac JL, Bogutz AB, Morrissy AS, Lefebvre L (2012) Tissue-specific alternative polyadenylation at the imprinted gene Mest regulates allelic usage at Copg2. Nucleic Acids Res 40(4):1523–1535

    PubMed  CAS  Google Scholar 

  388. Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R et al (2013) Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci 16(2):201–209

    PubMed  CAS  Google Scholar 

  389. Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pasca AM et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17(12):1657–1662

    PubMed  CAS  Google Scholar 

  390. Fischer B, Dimopoulou A, Egerer J, Gardeitchik T, Kidd A, Jost D et al (2012) Further characterization of ATP6V0A2-related autosomal recessive cutis laxa. Hum Genet 131(11):1761–1773

    PubMed  CAS  Google Scholar 

  391. Hermle T, Guida MC, Beck S, Helmstadter S, Simons M (2013) Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J 32(2):245–259

    PubMed  CAS  Google Scholar 

  392. Ramser J, Abidi FE, Burckle CA, Lenski C, Toriello H, Wen G et al (2005) A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet 14(8):1019–1027

    PubMed  CAS  Google Scholar 

  393. Reiter LT, Seagroves TN, Bowers M, Bier E (2006) Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum Mol Genet 15(18):2825–2835

    PubMed  CAS  Google Scholar 

  394. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26(19):4215–4227

    PubMed  CAS  Google Scholar 

  395. Simon GC, Schonteich E, Wu CC, Piekny A, Ekiert D, Yu X et al (2008) Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 27(13):1791–1803

    PubMed  CAS  Google Scholar 

  396. Jensen L, Farook MF, Reiter LT (2013) Proteomic profiling in Drosophila reveals potential dube3a regulation of the actin cytoskeleton and neuronal homeostasis. PLoS One 8(4):e61952

    PubMed  CAS  Google Scholar 

  397. Smith CM, Chircop M (2012) Clathrin-mediated endocytic proteins are involved in regulating mitotic progression and completion. Traffic 13(12):1628–1641

    PubMed  CAS  Google Scholar 

  398. Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH (2011) Annexin B9 binds to beta(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 124(Pt 17):2914–2926

    PubMed  CAS  Google Scholar 

  399. Keil R, Kiessling C, Hatzfeld M (2009) Targeting of p0071 to the midbody depends on KIF3. J Cell Sci 122(Pt 8):1174–1183

    PubMed  CAS  Google Scholar 

  400. Wolf A, Keil R, Gotzl O, Mun A, Schwarze K, Lederer M et al (2006) The armadillo protein p0071 regulates Rho signalling during cytokinesis. Nat Cell Biol 8(12):1432–1440

    PubMed  CAS  Google Scholar 

  401. Liu P, Carvalho CM, Hastings PJ, Lupski JR (2012) Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 22(3):211–220

    PubMed  CAS  Google Scholar 

  402. Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JR (2011) Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 89(4):580–588

    PubMed  CAS  Google Scholar 

  403. Carmona-Mora P, Walz K (2010) Retinoic acid induced 1, RAI1: a dosage sensitive gene related to neurobehavioral alterations including autistic behavior. Curr Genomics 11(8):607–617

    PubMed  CAS  Google Scholar 

  404. Gulhan Ercan-Sencicek A, Davis Wright NR, Frost SJ, Fulbright RK, Felsenfeld S, Hart L et al (2012) Searching for Potocki-Lupski syndrome phenotype: a patient with language impairment and no autism. Brain Dev 34(8):700–703

    PubMed  CAS  Google Scholar 

  405. Zhang F, Potocki L, Sampson JB, Liu P, Sanchez-Valle A, Robbins-Furman P et al (2010) Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am J Hum Genet 86(3):462–470

    PubMed  CAS  Google Scholar 

  406. Lovell PV, Clayton DF, Replogle KL, Mello CV (2008) Birdsong “transcriptomics”: neurochemical specializations of the oscine song system. PLoS One 3(10):e3440

    PubMed  Google Scholar 

  407. Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JB, Backstrom N et al (2010) Molecular evolution of genes in avian genomes. Genome Biol 11(6):R68

    PubMed  Google Scholar 

  408. Denisenko-Nehrbass NI, Jarvis E, Scharff C, Nottebohm F, Mello CV (2000) Site-specific retinoic acid production in the brain of adult songbirds. Neuron 27(2):359–370

    PubMed  CAS  Google Scholar 

  409. Denisenko-Nehrbass NI, Mello CV (2001) Molecular targets of disulfiram action on song maturation in zebra finches. Brain Res Mol Brain Res 87(2):246–250

    PubMed  CAS  Google Scholar 

  410. Olson CR, Rodrigues PV, Jeong JK, Prahl DJ, Mello CV (2011) Organization and development of zebra finch HVC and paraHVC based on expression of zRalDH, an enzyme associated with retinoic acid production. J Comp Neurol 519(1):148–161

    PubMed  CAS  Google Scholar 

  411. Herman EK, Walker G, van der Giezen M, Dacks JB (2011) Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT 0. J Cell Sci 124(Pt 4):613–621

    PubMed  CAS  Google Scholar 

  412. Blanc C, Charette SJ, Mattei S, Aubry L, Smith EW, Cosson P et al (2009) Dictyostelium Tom1 participates to an ancestral ESCRT-0 complex. Traffic 10(2):161–171

    PubMed  CAS  Google Scholar 

  413. Puertollano R (2005) Interactions of TOM1L1 with the multivesicular body sorting machinery. J Biol Chem 280(10):9258–9264

    PubMed  CAS  Google Scholar 

  414. Yanagida-Ishizaki Y, Takei T, Ishizaki R, Imakagura H, Takahashi S, Shin HW et al (2008) Recruitment of Tom1L1/Srcasm to endosomes and the midbody by Tsg101. Cell Struct Funct 33(1):91–100

    PubMed  CAS  Google Scholar 

  415. Wang T, Liu NS, Seet LF, Hong W (2010) The emerging role of VHS domain-containing Tom1, Tom1L1 and Tom1L2 in membrane trafficking. Traffic 11(9):1119–1128

    PubMed  CAS  Google Scholar 

  416. Katoh Y, Imakagura H, Futatsumori M, Nakayama K (2006) Recruitment of clathrin onto endosomes by the Tom1-Tollip complex. Biochem Biophys Res Commun 341(1):143–149

    PubMed  CAS  Google Scholar 

  417. Bayes M, Magano LF, Rivera N, Flores R, Perez Jurado LA (2003) Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet 73(1):131–151

    PubMed  CAS  Google Scholar 

  418. Pober BR (2010) Williams-Beuren syndrome. N Engl J Med 362(3):239–252

    PubMed  CAS  Google Scholar 

  419. Haas BW, Reiss AL (2012) Social brain development in williams syndrome: the current status and directions for future research. Front Psychol 3:186

    PubMed  Google Scholar 

  420. Porter MA, Shaw TA, Marsh PJ (2010) An unusual attraction to the eyes in Williams-Beuren syndrome: a manipulation of facial affect while measuring face scanpaths. Cogn Neuropsychiatry 15(6):505–530

    PubMed  Google Scholar 

  421. Riby DM, Hancock PJ (2008) Viewing it differently: social scene perception in Williams syndrome and autism. Neuropsychologia 46(11):2855–2860

    PubMed  Google Scholar 

  422. Jones W, Carr K, Klin A (2008) Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch Gen Psychiatry 65(8):946–954

    PubMed  Google Scholar 

  423. Rice K, Moriuchi JM, Jones W, Klin A (2012) Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. J Am Acad Child Adolesc Psychiatry 51(3):238–248

    PubMed  Google Scholar 

  424. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70(5):863–885

    PubMed  CAS  Google Scholar 

  425. Velleman SL, Mervis CB (2011) Children with 7q11.23 duplication syndrome: speech, language, cognitive, and behavioral characteristics and their implications for intervention. Perspect Lang Learn Educ 18(3):108–116

    PubMed  Google Scholar 

  426. Masataka N (2001) Why early linguistic milestones are delayed in children with Williams syndrome: late onset of hand banging as a possible rate–limiting constraint on the emergence of canonical babbling. Dev Sci 4(2):158–164

    Google Scholar 

  427. Osborne LR, Mervis CB (2007) Rearrangements of the Williams-Beuren syndrome locus: molecular basis and implications for speech and language development. Expert Rev Mol Med 9(15):1–16

    PubMed  Google Scholar 

  428. Berg JS, Brunetti-Pierri N, Peters SU, Kang SH, Fong CT, Salamone J et al (2007) Speech delay and autism spectrum behaviors are frequently associated with duplication of the 7q11.23 Williams-Beuren syndrome region. Genet Med 9(7):427–441

    PubMed  Google Scholar 

  429. Somerville MJ, Mervis CB, Young EJ, Seo EJ, del Campo M, Bamforth S et al (2005) Severe expressive-language delay related to duplication of the Williams-Beuren locus. N Engl J Med 353(16):1694–1701

    PubMed  CAS  Google Scholar 

  430. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF et al (1996) LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86(1):59–69

    PubMed  CAS  Google Scholar 

  431. Gray V, Karmiloff-Smith A, Funnell E, Tassabehji M (2006) In-depth analysis of spatial cognition in Williams syndrome: a critical assessment of the role of the LIMK1 gene. Neuropsychologia 44(5):679–685

    PubMed  Google Scholar 

  432. Matsumoto N, Kitani R, Kalinec F (2011) Linking LIMK1 deficiency to hyperacusis and progressive hearing loss in individuals with Williams syndrome. Commun Integr Biol 4(2):208–210

    PubMed  CAS  Google Scholar 

  433. Zhao C, Aviles C, Abel RA, Almli CR, McQuillen P, Pleasure SJ (2005) Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development 132(12):2917–2927

    PubMed  CAS  Google Scholar 

  434. Walaas SI, Hemmings HC Jr, Greengard P, Nairn AC (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 5:50

    PubMed  CAS  Google Scholar 

  435. Yger M, Girault JA (2011) DARPP-32, Jack of All Trades… Master of Which? Front Behav Neurosci 5:56

    PubMed  CAS  Google Scholar 

  436. Davis RL (1996) Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 76(2):299–317

    PubMed  CAS  Google Scholar 

  437. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    PubMed  CAS  Google Scholar 

  438. Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC et al (2009) Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem 284(40):27533–27543

    PubMed  CAS  Google Scholar 

  439. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609

    PubMed  CAS  Google Scholar 

  440. Hotte M, Thuault S, Lachaise F, Dineley KT, Hemmings HC, Nairn AC et al (2006) D1 receptor modulation of memory retrieval performance is associated with changes in pCREB and pDARPP-32 in rat prefrontal cortex. Behav Brain Res 171(1):127–133

    PubMed  CAS  Google Scholar 

  441. Viola H, Furman M, Izquierdo LA, Alonso M, Barros DM, de Souza MM et al (2000) Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J Neurosci 20(23):RC112

    PubMed  CAS  Google Scholar 

  442. Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31(26):9466–9471

    PubMed  CAS  Google Scholar 

  443. Maguschak KA, Ressler KJ (2011) Wnt signaling in amygdala-dependent learning and memory. J Neurosci 31(37):13057–13067

    PubMed  CAS  Google Scholar 

  444. Riters LV (2012) The role of motivation and reward neural systems in vocal communication in songbirds. Front Neuroendocrinol 33(2):194–209

    PubMed  Google Scholar 

  445. Jarjour S, Bai L, Gianoulakis C (2009) Effect of acute ethanol administration on the release of opioid peptides from the midbrain including the ventral tegmental area. Alcohol Clin Exp Res 33(6):1033–1043

    PubMed  CAS  Google Scholar 

  446. Leriche M, Cote-Velez A, Mendez M (2007) Presence of pro-opiomelanocortin mRNA in the rat medial prefrontal cortex, nucleus accumbens and ventral tegmental area: studies by RT-PCR and in situ hybridization techniques. Neuropeptides 41(6):421–431

    PubMed  CAS  Google Scholar 

  447. Rodriguez-Munoz M, de la Torre-Madrid E, Sanchez-Blazquez P, Wang JB, Garzon J (2008) NMDAR-nNOS generated zinc recruits PKCgamma to the HINT1-RGS17 complex bound to the C terminus of Mu-opioid receptors. Cell Signal 20(10):1855–1864

    PubMed  CAS  Google Scholar 

  448. Sanchez-Blazquez P, Rodriguez-Munoz M, Bailon C, Garzon J (2012) GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein. Antioxid Redox Signal 17(9):1163–1177

    PubMed  CAS  Google Scholar 

  449. Huber O, Weiske J (2008) Beta-catenin takes a HIT. Cell Cycle 7(10):1326–1331

    PubMed  CAS  Google Scholar 

  450. Rodriguez-Munoz M, Garzon J (2013) Nitric oxide and zinc-mediated protein assemblies involved in Mu opioid receptor signaling. Mol Neurobiol, doi:10.1007/s12035-013-8465-z

  451. James MA, Lu Y, Liu Y, Vikis HG, You M (2009) RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 69(5):2108–2116

    PubMed  CAS  Google Scholar 

  452. Chen X, Geller EB, Rogers TJ, Adler MW (2007) The chemokine CX3CL1/fractalkine interferes with the antinociceptive effect induced by opioid agonists in the periaqueductal grey of rats. Brain Res 1153:52–57

    PubMed  CAS  Google Scholar 

  453. Heinisch S, Palma J, Kirby LG (2011) Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain Behav Immun 25(2):360–372

    PubMed  CAS  Google Scholar 

  454. Suzuki M, El-Hage N, Zou S, Hahn YK, Sorrell ME, Sturgill JL et al (2011) Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol Neurodegener 6:78

    PubMed  CAS  Google Scholar 

  455. Khurshid N, Agarwal V, Iyengar S (2009) Expression of mu- and delta-opioid receptors in song control regions of adult male zebra finches (Taenopygia guttata). J Chem Neuroanat 37(3):158–169

    PubMed  CAS  Google Scholar 

  456. Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV et al (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci U S A 103(41):15212–15217

    PubMed  CAS  Google Scholar 

  457. ** J, Kittanakom S, Wong V, Reyes BA, Van Bockstaele EJ, Stagljar I et al (2010) Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence. BMC Neurosci 11:33

    PubMed  Google Scholar 

  458. Reyes AR, Levenson R, Berrettini W, Van Bockstaele EJ (2010) Ultrastructural relationship between the mu opioid receptor and its interacting protein, GPR177, in striatal neurons. Brain Res 1358:71–80

    PubMed  CAS  Google Scholar 

  459. Reyes BA, Vakharia K, Ferraro TN, Levenson R, Berrettini WH, Van Bockstaele EJ (2012) Opiate agonist-induced re-distribution of Wntless, a mu-opioid receptor interacting protein, in rat striatal neurons. Exp Neurol 233(1):205–213

    PubMed  CAS  Google Scholar 

  460. Strug LJ, Addis L, Chiang T, Baskurt Z, Li W, Clarke T et al (2012) The genetics of reading disability in an often excluded sample: novel loci suggested for reading disability in Rolandic epilepsy. PLoS One 7(7):e40696

    PubMed  CAS  Google Scholar 

  461. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338(6104):222–226

    PubMed  CAS  Google Scholar 

  462. Kang C, Drayna D (2012) A role for inherited metabolic deficits in persistent developmental stuttering. Mol Genet Metab 107(3):276–280

    PubMed  CAS  Google Scholar 

  463. Clarke RA, Lee S, Eapen V (2012) Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including Autism. Transl Psychiatry 2:e158

    PubMed  CAS  Google Scholar 

  464. Petrin AL, Giacheti CM, Maximino LP, Abramides DV, Zanchetta S, Rossi NF et al (2010) Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 152A(12):3164–3172

    PubMed  Google Scholar 

  465. Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA (2003) CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 82(1):1–9

    PubMed  CAS  Google Scholar 

  466. Tzschach A, Bisgaard AM, Kirchhoff M, Graul-Neumann LM, Neitzel H, Page S et al (2010) Chromosome aberrations involving 10q22: report of three overlap** interstitial deletions and a balanced translocation disrupting C10orf11. Eur J Hum Genet 18(3):291–295

    PubMed  Google Scholar 

  467. Tzschach A, Krause-Plonka I, Menzel C, Knoblauch A, Toennies H, Hoeltzenbein M et al (2006) Molecular cytogenetic analysis of a de novo interstitial chromosome 10q22 deletion. Am J Med Genet A 140(10):1108–1110

    PubMed  Google Scholar 

  468. Wada S, Hamada M, Kobayashi K, Satoh N (2008) Novel genes involved in canonical Wnt/beta-catenin signaling pathway in early Ciona intestinalis embryos. Dev Growth Differ 50(4):215–227

    PubMed  CAS  Google Scholar 

  469. Prasad A, Merico D, Thiruvahindrapuram B, Wei J, Lionel AC, Sato D et al (2012) A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda) 2(12):1665–1685

    CAS  Google Scholar 

  470. Lo-Castro A, Brancati F, Digilio MC, Garaci FG, Bollero P, Alfieri P et al (2013) Neurobehavioral phenotype observed in KBG syndrome caused by ANKRD11 mutations. Am J Med Genet B Neuropsychiatr Genet 162(1):17–23

    CAS  Google Scholar 

  471. Sacharow S, Li D, Fan YS, Tekin M (2012) Familial 16q24.3 microdeletion involving ANKRD11 causes a KBG-like syndrome. Am J Med Genet A 158A(3):547–552

    PubMed  Google Scholar 

  472. Willemsen MH, Fernandez BA, Bacino CA, Gerkes E, de Brouwer AP, Pfundt R et al (2010) Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur J Hum Genet 18(4):429–435

    PubMed  CAS  Google Scholar 

  473. Neilsen PM, Cheney KM, Li CW, Chen JD, Cawrse JE, Schulz RB et al (2008) Identification of ANKRD11 as a p53 coactivator. J Cell Sci 121(Pt 21):3541–3552

    PubMed  CAS  Google Scholar 

  474. Noll JE, Jeffery J, Al-Ejeh F, Kumar R, Khanna KK, Callen DF et al (2012) Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31(23):2836–2848

    PubMed  CAS  Google Scholar 

  475. Cocchella A, Malacarne M, Forzano F, Marciano C, Pierluigi M, Perroni L et al (2010) The refinement of the critical region for the 2q31.2q32.3 deletion syndrome indicates candidate genes for mental retardation and speech impairment. Am J Med Genet B Neuropsychiatr Genet 153B(7):1342–1346

    PubMed  Google Scholar 

  476. Mencarelli MA, Caselli R, Pescucci C, Hayek G, Zappella M, Renieri A et al (2007) Clinical and molecular characterization of a patient with a 2q31.2-32.3 deletion identified by array-CGH. Am J Med Genet A 143A(8):858–865

    PubMed  CAS  Google Scholar 

  477. Prontera P, Bernardini L, Stangoni G, Capalbo A, Rogaia D, Ardisia C et al (2009) 2q31.2q32.3 deletion syndrome: report of an adult patient. Am J Med Genet A 149A(4):706–712

    PubMed  Google Scholar 

  478. Van Buggenhout G, Van Ravenswaaij-Arts C, Mc Maas N, Thoelen R, Vogels A, Smeets D et al (2005) The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur J Med Genet 48(3):276–289

    PubMed  Google Scholar 

  479. Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121(Pt 6):737–746

    PubMed  CAS  Google Scholar 

  480. Ekstrom EJ, Sherwood V, Andersson T (2011) Methylation and loss of Secreted Frizzled-Related Protein 3 enhances melanoma cell migration and invasion. PLoS One 6(4):e18674

    PubMed  Google Scholar 

  481. Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP et al (2007) Wnt5a functions in planar cell polarity regulation in mice. Dev Biol 306(1):121–133

    PubMed  CAS  Google Scholar 

  482. Yamada A, Iwata T, Yamato M, Okano T, Izumi Y (2013) Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells. Biomaterials 34(13):3270–3278

    PubMed  CAS  Google Scholar 

  483. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL et al (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24(4):1037–1047

    PubMed  CAS  Google Scholar 

  484. Rasband MN (2011) Composition, assembly, and maintenance of excitable membrane domains in myelinated axons. Semin Cell Dev Biol 22(2):178–184

    PubMed  CAS  Google Scholar 

  485. Savvaki M, Panagiotaropoulos T, Stamatakis A, Sargiannidou I, Karatzioula P, Watanabe K et al (2008) Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes. Mol Cell Neurosci 39(3):478–490

    PubMed  CAS  Google Scholar 

  486. Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Sudhof TC (2012) Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci U S A 109(44):18120–18125

    PubMed  CAS  Google Scholar 

  487. Bel C, Oguievetskaia K, Pitaval C, Goutebroze L, Faivre-Sarrailh C (2009) Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 122(Pt 18):3403–3413

    PubMed  CAS  Google Scholar 

  488. von Bartheld CS (2004) Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. J Neurobiol 58(2):295–314

    Google Scholar 

  489. Von Bartheld CS, Altick AL (2011) Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 93(3):313–340

    Google Scholar 

  490. Saito N, Okada Y, Noda Y, Kinoshita Y, Kondo S, Hirokawa N (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18(3):425–438

    PubMed  CAS  Google Scholar 

  491. Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22(6):2215–2224

    PubMed  CAS  Google Scholar 

  492. Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T et al (2012) Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22(6):1059–1068

    PubMed  CAS  Google Scholar 

  493. Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid Syndrome). Mol Syndromol 2(3–5):186–201

    PubMed  CAS  Google Scholar 

  494. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442

    PubMed  CAS  Google Scholar 

  495. Uchino S, Waga C (2013) SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 35(2):106–110

    PubMed  Google Scholar 

  496. Schmeisser MJ, Grabrucker AM, Bockmann J, Boeckers TM (2009) Synaptic cross-talk between N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses. J Biol Chem 284(42):29146–29157

    PubMed  CAS  Google Scholar 

  497. Tobaben S, Sudhof TC, Stahl B (2000) The G protein-coupled receptor CL1 interacts directly with proteins of the Shank family. J Biol Chem 275(46):36204–36210

    PubMed  CAS  Google Scholar 

  498. Bonaglia MC, Marelli S, Novara F, Commodaro S, Borgatti R, Minardo G et al (2010) Genotype-phenotype relationship in three cases with overlap** 19p13.12 microdeletions. Eur J Hum Genet 18(12):1302–1309

    PubMed  Google Scholar 

  499. Boucard AA, Ko J, Sudhof TC (2012) High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem 287(12):9399–9413

    PubMed  CAS  Google Scholar 

  500. Bena F, Bruno DL, Eriksson M, van Ravenswaaij-Arts C, Stark Z, Dijkhuizen T et al (2013) Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am J Med Genet B Neuropsychiatr Genet 162(4):388–403

    CAS  Google Scholar 

  501. Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O et al (2011) Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 108(29):12113–12118

    PubMed  CAS  Google Scholar 

  502. Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL et al (2009) CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet 85(5):655–666

    PubMed  CAS  Google Scholar 

  503. Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I et al (2006) CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev Cell 11(1):21–32

    PubMed  CAS  Google Scholar 

  504. Maas C, Torres VI, Altrock WD, Leal-Ortiz S, Wagh D, Terry-Lorenzo RT et al (2012) Formation of Golgi-derived active zone precursor vesicles. J Neurosci 32(32):11095–11108

    PubMed  CAS  Google Scholar 

  505. Barrow J (2011) Wnt/planar cell polarity signaling: an important mechanism to coordinate growth and patterning in the limb. Organogenesis 7(4):260–266

    PubMed  Google Scholar 

  506. Duijf PH, van Bokhoven H, Brunner HG (2003) Pathogenesis of split-hand/split-foot malformation. Hum Mol Genet 12 Spec No 1:R51–R60

    Google Scholar 

  507. Guerrini L, Costanzo A, Merlo GR (2011) A symphony of regulations centered on p63 to control development of ectoderm-derived structures. J Biomed Biotechnol 2011:864904

    PubMed  Google Scholar 

  508. Niedrist D, Lurie IW, Schinzel A (2009) 4q32-q35 and 6q16-q22 are valuable candidate regions for split hand/foot malformation. Eur J Hum Genet 17(8):1086–1091

    PubMed  CAS  Google Scholar 

  509. Dai L, Deng Y, Li N, **e L, Mao M, Zhu J (2013) Discontinuous microduplications at chromosome 10q24.31 identified in a Chinese family with split hand and foot malformation. BMC Med Genet 14:45

    PubMed  Google Scholar 

  510. Lyle R, Radhakrishna U, Blouin JL, Gagos S, Everman DB, Gehrig C et al (2006) Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. Am J Med Genet A 140(13):1384–1395

    PubMed  Google Scholar 

  511. Hyon C, Marlin S, Chantot-Bastaraud S, Mabboux P, Beaujard MP, Al Ageeli E et al (2011) A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation. Eur J Med Genet 54(3):287–291

    PubMed  Google Scholar 

  512. Lezirovitz K, Maestrelli SR, Cotrim NH, Otto PA, Pearson PL, Mingroni-Netto RC (2008) A novel locus for split-hand/foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1-17p13.3. Hum Genet 123(6):625–631

    PubMed  CAS  Google Scholar 

  513. Ostergaard JR, Graakjaer J, Brandt C, Birkebaek NH (2012) Further delineation of 17p13.3 microdeletion involving CRK. The effect of growth hormone treatment. Eur J Med Genet 55(1):22–26

    PubMed  Google Scholar 

  514. Sutton VR, Van den Veyver IB (1993) Focal dermal hypoplasia. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, editors. GeneReviews™ [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2013

    Google Scholar 

  515. Grzeschik KH, Bornholdt D, Oeffner F, Konig A, del Carmen Boente M, Enders H et al (2007) Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat Genet 39(7):833–835

    PubMed  CAS  Google Scholar 

  516. Wang X, Reid Sutton V, Omar Peraza-Llanes J, Yu Z, Rosetta R, Kou YC et al (2007) Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat Genet 39(7):836–838

    PubMed  CAS  Google Scholar 

  517. Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G et al (2008) Wnt-ligand-dependent interaction of TAK1 (TGF-beta-activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal 20(11):2134–2144

    PubMed  CAS  Google Scholar 

  518. Passarge E (2000) A distinctive phenotype associated with an interstitial deletion 6q14 contained within a de novo pericentric inversion 6 (p11.2q15). Cytogenet Cell Genet 91(1–4):192–198

    PubMed  CAS  Google Scholar 

  519. Poot M, van’t Slot R, Leupert R, Beyer V, Passarge E, Haaf T (2009) Three de novo losses and one insertion within a pericentric inversion of chromosome 6 in a patient with complete absence of expressive speech and reduced pain perception. Eur J Med Genet 52(1):27–30

    PubMed  Google Scholar 

  520. Aten E, den Hollander N, Ruivenkamp C, Knijnenburg J, van Bokhoven H, den Dunnen J et al (2009) Split hand-foot malformation, tetralogy of Fallot, mental retardation and a 1 Mb 19p deletion-evidence for further heterogeneity? Am J Med Genet A 149A(5):975–981

    PubMed  CAS  Google Scholar 

  521. Bens S, Haake A, Tonnies H, Vater I, Stephani U, Holterhus PM et al (2011) A de novo 1.1Mb microdeletion of chromosome 19p13.11 provides indirect evidence for EPS15L1 to be a strong candidate for split hand split foot malformation. Eur J Med Genet 54(5):e501–e504

    PubMed  Google Scholar 

  522. Pozzi B, Amodio S, Lucano C, Sciullo A, Ronzoni S, Castelletti D et al (2012) The endocytic adaptor Eps15 controls marginal zone B cell numbers. PLoS One 7(11):e50818

    PubMed  CAS  Google Scholar 

  523. Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P (2000) Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet 67(1):59–66

    PubMed  CAS  Google Scholar 

  524. Drewelus I, Gopfert C, Hippel C, Dickmanns A, Damianitsch K, Pieler T et al (2010) p63 antagonizes Wnt-induced transcription. Cell Cycle 9(3):580–587

    PubMed  Google Scholar 

  525. Gripp KW, Ennis S, Napoli J (2013) Exome analysis in clinical practice: expanding the phenotype of bartsocas-papas syndrome. Am J Med Genet A 161(5):1058–1063

    CAS  Google Scholar 

  526. Mitchell K, O’Sullivan J, Missero C, Blair E, Richardson R, Anderson B et al (2012) Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet 90(1):69–75

    PubMed  CAS  Google Scholar 

  527. Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V et al (2013) Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science 339(6126):1441–1445

    PubMed  CAS  Google Scholar 

  528. Dimitrov B, Balikova I, de Ravel T, Van Esch H, De Smedt M, Baten E et al (2011) 2q31.1 microdeletion syndrome: redefining the associated clinical phenotype. J Med Genet 48(2):98–104

    PubMed  CAS  Google Scholar 

  529. Goodman FR, Majewski F, Collins AL, Scambler PJ (2002) A 117-kb microdeletion removing HOXD9-HOXD13 and EVX2 causes synpolydactyly. Am J Hum Genet 70(2):547–555

    PubMed  CAS  Google Scholar 

  530. Robledo RF, Rajan L, Li X, Lufkin T (2002) The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 16(9):1089–1101

    PubMed  CAS  Google Scholar 

  531. van Silfhout AT, van den Akker PC, Dijkhuizen T, Verheij JB, Olderode-Berends MJ, Kok K et al (2009) Split hand/foot malformation due to chromosome 7q aberrations(SHFM1): additional support for functional haploinsufficiency as the causative mechanism. Eur J Hum Genet 17(11):1432–1438

    PubMed  Google Scholar 

  532. Feenstra I, Hanemaaijer N, Sikkema-Raddatz B, Yntema H, Dijkhuizen T, Lugtenberg D et al (2011) Balanced into array: genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis. Eur J Hum Genet 19(11):1152–1160

    PubMed  Google Scholar 

  533. Nakashima N, Yamagata T, Mori M, Kuwajima M, Suwa K, Momoi MY (2010) Expression analysis and mutation detection of DLX5 and DLX6 in autism. Brain Dev 32(2):98–104

    PubMed  Google Scholar 

  534. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484

    PubMed  CAS  Google Scholar 

  535. Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME et al (2010) Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 6(8):e1001065

    PubMed  Google Scholar 

  536. Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26(4):460–463

    PubMed  CAS  Google Scholar 

  537. Mariani FV, Ahn CP, Martin GR (2008) Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453(7193):401–405

    PubMed  CAS  Google Scholar 

  538. Corballis MC (2009) Language as gesture. Hum Mov Sci 28(5):556–565

    PubMed  Google Scholar 

  539. Kalil K, Li L, Hutchins BI (2011) Signaling mechanisms in cortical axon growth, guidance, and branching. Front Neuroanat 5:62

    PubMed  Google Scholar 

  540. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB et al (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26(21):5840–5848

    PubMed  CAS  Google Scholar 

  541. Thomas C, Humphreys K, Jung KJ, Minshew N, Behrmann M (2011) The anatomy of the callosal and visual-association pathways in high-functioning autism: a DTI tractography study. Cortex 47(7):863–873

    PubMed  Google Scholar 

  542. Wen J, Yang HB, Zhou B, Lou HF, Duan S (2013) beta-Catenin is critical for cerebellar foliation and lamination. PLoS One 8(5):e64451

    PubMed  CAS  Google Scholar 

  543. Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G (2013) Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci 7:15

    PubMed  Google Scholar 

  544. Baron-Cohen S (2010) Empathizing, systemizing, and the extreme male brain theory of autism. Prog Brain Res 186:167–175

    PubMed  Google Scholar 

  545. Breedlove SM (2010) Minireview: organizational hypothesis: instances of the fingerpost. Endocrinology 151(9):4116–4122

    PubMed  CAS  Google Scholar 

  546. Manning JT, Baron-Cohen S, Wheelwright S, Sanders G (2001) The 2nd to 4th digit ratio and autism. Dev Med Child Neurol 43(3):160–164

    PubMed  CAS  Google Scholar 

  547. Teatero ML, Netley C (2013) A critical review of the research on the extreme male brain theory and digit ratio (2D:4D). J Autism Dev Disord, doi:10.1007/s10803-013-1819-6

  548. Zheng Z, Cohn MJ (2011) Developmental basis of sexually dimorphic digit ratios. Proc Natl Acad Sci U S A 108(39):16289–16294

    PubMed  CAS  Google Scholar 

  549. Wegiel J, Kuchna I, Nowicki K, Imaki H, Yong Ma S, Azmitia EC et al (2013) Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res 1512:106–122

    PubMed  CAS  Google Scholar 

  550. Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187

    PubMed  Google Scholar 

  551. Schmitt JE, Eliez S, Warsofsky IS, Bellugi U, Reiss AL (2001) Enlarged cerebellar vermis in Williams syndrome. J Psychiatr Res 35(4):225–229

    PubMed  CAS  Google Scholar 

  552. Hashimoto M, Ito R, Kitamura N, Namba K, Hisano Y (2012) Epha4 controls the midline crossing and contralateral axonal projections of inferior olive neurons. J Comp Neurol 520(8):1702–1720

    PubMed  CAS  Google Scholar 

  553. Losin EA, Iacoboni M, Martin A, Dapretto M (2012) Own-gender imitation activates the brain’s reward circuitry. Soc Cogn Affect Neurosci 7(7):804–810

    PubMed  Google Scholar 

  554. Cossu G, Boria S, Copioli C, Bracceschi R, Giuberti V, Santelli E et al (2012) Motor representation of actions in children with autism. PLoS One 7(9):e44779

    PubMed  CAS  Google Scholar 

  555. Williams JH, Whiten A, Singh T (2004) A systematic review of action imitation in autistic spectrum disorder. J Autism Dev Disord 34(3):285–299

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry J. Lints M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deshpande, M., Lints, T.J. (2013). The Molecular Convergence of Birdsong and Speech. In: Helekar, S. (eds) Animal Models of Speech and Language Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8400-4_6

Download citation

Publish with us

Policies and ethics

Navigation