Biased Gene Transfer Contributes to Maintaining the Tree of Life

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

Horizontal gene transfer (HGT) between closely and distantly related lineages is a recurrent event in the Tree of Life (ToL) and provides genetic novelty that the recipient can utilize. Often, HGT is considered as an impediment in the reconstruction of life’s genealogy, and hence the concept of the ToL as a representation of evolutionary events is considered by some as erroneous. However, biased gene transfer, or the transfer between closely related lineages, can actually reinforce the familiar tree-like pattern by making organisms in close phylogenetic proximity appear even more closely related. The consequence of this bias is that the ToL remains tree-like when viewed from a distance, but looking closely, branches are fuzzy and boundaries between lineages may become indistinct as a result of recurrent HGT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31(2–3):111–119

    Article  PubMed  CAS  Google Scholar 

  2. Huang J, Gogarten JP (2006) Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends Genet 22(7):361–366

    Article  PubMed  CAS  Google Scholar 

  3. Huang J, Gogarten JP (2009) Ancient gene transfer as a tool in phylogenetic reconstruction. Methods Mol Biol 532:127–139

    Article  PubMed  CAS  Google Scholar 

  4. Lawrence JG, Retchless AC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532:29–53

    Article  PubMed  CAS  Google Scholar 

  5. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323(5915):741–746

    Article  PubMed  CAS  Google Scholar 

  6. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2129

    Article  PubMed  CAS  Google Scholar 

  7. Doolittle WF, Bapteste E (2007) Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci U S A 104(7):2043–2049

    Article  PubMed  CAS  Google Scholar 

  8. Bapteste E, O’Malley MA, Beiko RG et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    Article  PubMed  Google Scholar 

  9. Koonin EV, Wolf YI, Puigbò P (2009) The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol 74:205–213

    PubMed  CAS  Google Scholar 

  10. Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9(7):543–555

    Article  PubMed  CAS  Google Scholar 

  11. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25(3):107–110

    Article  PubMed  CAS  Google Scholar 

  12. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3(9):679–687

    Article  PubMed  CAS  Google Scholar 

  13. Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci U S A 109(13):4962–4967

    Article  PubMed  CAS  Google Scholar 

  14. Christin P-A, Edwards EJ, Besnard G et al (2012) Adaptive evolution of C(4) photosynthesis through recurrent lateral gene transfer. Curr Biol 22(5):445–449

    Article  PubMed  CAS  Google Scholar 

  15. Acuña R, Padilla BE, Flórez-Ramos CP et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109(11):4197–4202

    PubMed  Google Scholar 

  16. Danchin EGJ, Rosso M-N, Vieira P et al (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A 107(41):17651–17656

    Article  PubMed  CAS  Google Scholar 

  17. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912

    Article  PubMed  CAS  Google Scholar 

  18. Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G (2012) Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 14(9):2379–2394

    Article  PubMed  CAS  Google Scholar 

  19. Lurie-Weinberger MN, Peeri M, Gophna U (2012) Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics 99(1):52–58

    Article  PubMed  CAS  Google Scholar 

  20. Raz Y, Tannenbaum E (2010) The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics 185(1):327–337

    Article  PubMed  CAS  Google Scholar 

  21. Swithers KS, Soucy SM, Gogarten JP (2012) The role of reticulate evolution in creating innovation and complexity. Int J Evol Biol 2012:1–10

    Article  Google Scholar 

  22. Schjørring S, Krogfelt KA (2011) Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011:312956

    PubMed  Google Scholar 

  23. Nelson KE, Clayton RA, Gill SR et al (1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329

    Article  PubMed  CAS  Google Scholar 

  24. Zhaxybayeva O, Swithers K, Lapierre P et al (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci U S A 106:5865–5870

    Article  PubMed  CAS  Google Scholar 

  25. Boussau B, Gueguen L, Gouy M (2008) Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol Biol 8:272

    Article  PubMed  Google Scholar 

  26. Le Fourn C, Brasseur G, Brochier-Armanet C et al (2011) An oxygen reduction chain in the hyperthermophilic anaerobe Thermotoga maritima highlights horizontal gene transfer between Thermococcales and Thermotogales. Environ Microbiol 13(8):2132–2145

    Article  PubMed  CAS  Google Scholar 

  27. Beiko RG, Harlow TJ, Ragan MA (2005 Oct 4) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102(40):14332–7

    Article  PubMed  CAS  Google Scholar 

  28. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376):241–244

    Article  PubMed  CAS  Google Scholar 

  29. McNulty SN, Foster JM, Mitreva M et al (2010) Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS ONE 5(6):e11029

    Article  PubMed  Google Scholar 

  30. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65(2):183–195

    Article  PubMed  CAS  Google Scholar 

  31. Andam CP, Williams D, Gogarten JP (2010) Biased gene transfer mimics patterns created through shared ancestry. Proc Natl Acad Sci U S A 107(23):10679–10684

    Article  PubMed  CAS  Google Scholar 

  32. Tamminen M, Virta M, Fani R, Fondi M (2012) Large-scale analysis of plasmid relationships through gene-sharing networks. Mol Biol Evol 29(4):1225–1240

    Article  PubMed  CAS  Google Scholar 

  33. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16(9):1099–1108

    Article  PubMed  CAS  Google Scholar 

  34. Eppley JM, Tyson GW, Getz WM, Banfield JF (2007) Genetic exchange across a species boundary in the archaeal genus ferroplasma. Genetics 177(1):407–416

    Article  PubMed  CAS  Google Scholar 

  35. Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21(4):599–609

    Article  PubMed  CAS  Google Scholar 

  36. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19(12):2226–2238

    Article  PubMed  CAS  Google Scholar 

  37. Puigbò P, Wolf YI, Koonin EV (2010) The tree and net components of prokaryote evolution. Genome Biol Evol 2:745–756

    Article  PubMed  Google Scholar 

  38. Andam CP, Williams D, Gogarten JP (2010) Natural taxonomy in light of horizontal gene transfer. Biol Philos 25(4):589–602

    Article  Google Scholar 

  39. Andam CP, Gogarten JP (2011) Biased gene transfer and its implications for the concept of lineage. Biol Direct 6:47

    Article  PubMed  Google Scholar 

  40. Omelchenko MV, Galperin MY, Wolf YI, Koonin EV (2010) Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol Direct 5:31

    Article  PubMed  Google Scholar 

  41. Zhang R-G, Andersson CE, Savchenko A et al (2003) Structure of Escherichia coli ribose-5-phosphate isomerase: a ubiquitous enzyme of the pentose phosphate pathway and the Calvin cycle. Structure 11(1):31–42

    Article  PubMed  CAS  Google Scholar 

  42. Zhang R-G, Andersson CE, Skarina T et al (2003) The 2.2 A resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction. J Mol Biol 332(5):1083–1094

    Article  PubMed  CAS  Google Scholar 

  43. Roos AK, Andersson CE, Bergfors T et al (2004) Mycobacterium tuberculosis ribose-5-phosphate isomerase has a known fold, but a novel active site. J Mol Biol 335(3):799–809

    Article  PubMed  CAS  Google Scholar 

  44. Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229 (Database issue)

    Google Scholar 

  45. Roos AK, Mariano S, Kowalinski E, Salmon L, Mowbray SL (2008) D-ribose-5-phosphate isomerase B from Escherichia coli is also a functional D-allose-6-phosphate isomerase, while the Mycobacterium tuberculosis enzyme is not. J Mol Biol 382(3):667–679

    Article  PubMed  CAS  Google Scholar 

  46. Stern A, Mayrose I, Penn O, Shaul S, Gophna U, Pupko T (2010) An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst Biol 59(2):212–225

    Article  PubMed  CAS  Google Scholar 

  47. Grassi L, Caselle M, Lercher MJ, Lagomarsino MC (2012) Horizontal gene transfers as metagenomic gene duplications. Mol Biosyst 8(3):790–795

    Article  PubMed  CAS  Google Scholar 

  48. Karberg KA, Olsen GJ, Davis JJ (2011) Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. Proc Natl Acad Sci U S A 108(50):20154–20159

    Article  PubMed  CAS  Google Scholar 

  49. Skip**ton E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35(5):707–735

    Article  PubMed  CAS  Google Scholar 

  50. Beauregard-Racine J, Bicep C, Schliep K, Lopez P, Lapointe F-J, Bapteste E (2011) Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli. Biol Direct 6:39

    Article  PubMed  Google Scholar 

  51. Sharon I, Battchikova N, Aro E-M et al (2011) Comparative metagenomics of microbial traits within oceanic viral communities. ISME J 5(7):1178–1190

    Article  PubMed  CAS  Google Scholar 

  52. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10(7):472–482

    PubMed  CAS  Google Scholar 

  53. Ronning C, Losada L, Brinkac L et al (2010) Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements. BMC Microbiol 10(1):202

    Article  PubMed  Google Scholar 

  54. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22(15):1444–1448

    Article  PubMed  CAS  Google Scholar 

  55. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732

    Article  PubMed  CAS  Google Scholar 

  56. Bapteste E, Bouchard F, Burian RM (2012) Philosophy and evolution: minding the gap between evolutionary patterns and tree-like patterns. Methods Mol Biol 856:81–110

    Article  PubMed  Google Scholar 

  57. Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60(4):708–720

    Article  PubMed  CAS  Google Scholar 

  58. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  59. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  60. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  61. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Peter Gogarten PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andam, C., Gogarten, J.P. (2013). Biased Gene Transfer Contributes to Maintaining the Tree of Life. In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_14

Download citation

Publish with us

Policies and ethics

Navigation