Applications of Electrochemistry in the Design and Development of Medical Technologies and Devices

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

  • 2045 Accesses

Abstract

Medicine comprise a vast field of research that has crossed the demarcation lines between disciplines over the past decades becoming a multidisciplinary milieu that encompasses a variety of fields from basic sciences (e.g., mathematics and physics) to engineering, and even social sciences and epidemiology. All of these directly contribute to the evolution of medical technologies. In other words, multidisciplinary is a key concept in the evolution of modern medical devices and technologies. It is clear now that the development of biocompatible and durable medical devices rests upon implementation of discoveries from all basic sciences rather than major breakthrough in one field. This will be the scarlet thread in the following sections of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6.

    CAS  Google Scholar 

  2. Weaver FM, Follett K, Stern M, Hur K, Harris C, Jr Marks WJ, et al. Bilateral deep brain stimulation vs. best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.

    Article  CAS  Google Scholar 

  3. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-­analysis of outcomes. Mov Disord. 2006;21 Suppl 14:S290–304.

    Article  Google Scholar 

  4. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003;31:879–90.

    Article  CAS  Google Scholar 

  5. Stokes KB, Bornzin GA, Weabusch WA. A steroid-electing, low-threshold, low polarizing electrode. In: Steinkoff D, editor. Cardiac pacing. Darnstadt: Steinkoff; 1983. p. 369.

    Chapter  Google Scholar 

  6. Schwan HP. Determination of biological impedances. In: Nastuk WL, editor. Physical techniques in biological research. New York: Academic; 1963.

    Google Scholar 

  7. Ge Q, Yaxiong L, Hongzhong L, Yucheng D, ** Q, Rukun D. Fabrication of bio-microelectrodes for deep-brain stimulation using microfabrication and electroplating process. Microsyst Technol. 2009;15:933–9.

    Article  Google Scholar 

  8. Motta PS, Judy JW. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng. 2005;52(5):923.

    Article  Google Scholar 

  9. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res. 2001;56:261–72.

    Article  CAS  Google Scholar 

  10. Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, et al. Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation. 2009;12(2):85–103.

    Article  Google Scholar 

  11. Perea G, Araque A. GLIA modulates synaptic transmission. Brain Res Rev. 2010;63:93–102.

    Article  CAS  Google Scholar 

  12. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.

    Article  CAS  Google Scholar 

  13. Iswantini D, Kano K, Ikeda T. Kinetics and thermodynamics of activation of quinoprotein glucose dehydrogenase apoenzyme in vivo and catalytic activity of the activated enzyme in Escherichia coli cells. Biochem J. 2000;350(Pt 3):917–23.

    Article  CAS  Google Scholar 

  14. Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev. 2008;108:2482–505.

    Article  CAS  Google Scholar 

  15. Malmstadt HV, Pardue HL. Specific enzymatic determination of glucose in blood serum or plasma by an automatic potentiometric reaction-rate method. Clin Chem. 1962;8:606–15.

    CAS  Google Scholar 

  16. Pardue HL, Simon RK. Automatic amperometric assay of glucose oxidase. Anal Biochem. 1964;9:204–10.

    Article  CAS  Google Scholar 

  17. Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8.

    Article  CAS  Google Scholar 

  18. Updike SJ, Hicks GP. Reagentless substrate analysis with immobilized enzymes. Science. 1967;158:270–2.

    Article  CAS  Google Scholar 

  19. Kulys J, Tetianec L, Ziemys AJ. Probing Aspergillus niger glucose oxidase with pentacyanoferrate (III) aza- and thia-complexes. Inorg Biochem. 2006;100:1614–22.

    Article  CAS  Google Scholar 

  20. Kulys JJ, Samalius AS, Svirmickas GJ. Electron exchange between the enzyme active center and organic metal. FEBS Lett. 1980;114:7–10.

    Article  CAS  Google Scholar 

  21. Nikolaus N, Strehlitz B. Amperometric lactate biosensors and their ­application in (sports) medicine, or life quality and wellbeing. Microchim Acta. 2007;160(1–2):15–55.

    Google Scholar 

  22. Matthews DR, Holman RR, Bown E, Steemson EJ, Watson A, Hughes S, et al. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778–9.

    Article  CAS  Google Scholar 

  23. Heller A. Integrated medical feedback systems for drug delivery. AIChE J. 2005;51:1054–66.

    Article  CAS  Google Scholar 

  24. Yang DT, Robetorye RS, Rodgers GM. Home prothrombin time monitoring: a literature analysis. Am J Hematol. 2004;77:177–86.

    Article  Google Scholar 

  25. Cook SD, Thomas KA, Harding AE, Thomas KA, Harding AE, Collins CL, et al. The in vivo performance of 250 internal fixation devices: a follow-up study. Biomaterials. 1987;8:177–84.

    Article  CAS  Google Scholar 

  26. Jacobs JJ, Gilbert JL, Urban RM. Current concepts review—corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–82.

    CAS  Google Scholar 

  27. Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.

    Article  CAS  Google Scholar 

  28. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;18:1621–39.

    Article  Google Scholar 

  29. Alkhateeb E, Virtanen S. Influence of surface self-modification in Ringer’s solution on the passive behavior of titanium. J Biomed Mater Res A. 2005;4:934–40.

    Google Scholar 

  30. Duan K, Wang R. Surface modifications of bone implants through wet chemistry. J Mater Chem. 2006;16:2309–21.

    Article  CAS  Google Scholar 

  31. Rajter A, Kaluza GL, Yang Q, Hakimi D, Liu D, Tsui M, et al. Hydroxyapatite-coated cardiovascular stents. Eurointervention. 2006;2:113–5.

    Google Scholar 

  32. Choi J, Bogdanski D, Köller M, Esenwein SA, Müller D, Muhr G, et al. Calcium phosphate coating of nickel–titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24:3689–96.

    Article  CAS  Google Scholar 

  33. Zhang Q, Leng Y. Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials. 2005;26:3853–9.

    Article  CAS  Google Scholar 

  34. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med. 1998;9:67–72.

    Article  CAS  Google Scholar 

  35. Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using modulated electrochemical deposition method. J Biomed Mater Res. 2003;66A(4):819–28.

    Article  CAS  Google Scholar 

  36. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.

    Article  CAS  Google Scholar 

  37. Shu-Hua T, Eun-Jung L, Chee-Sung P, Won-Young C, Du-Sik S, Hyoun-Ee K. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J Mater Sci Mater Med. 2008;19:2453–61.

    Article  Google Scholar 

  38. Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet. 2003;361(9353):247–9.

    Article  Google Scholar 

  39. Gertner ME, Schlesinger M. Drug delivery from electrochemically deposited thin metal films. Electrochem Solid-State Lett. 2003;6(4):4–6.

    Article  Google Scholar 

  40. Duan K, Fan Y, Wang R. Electrolytic deposition of calcium etidronate drug coating on titanium substrate. J Biomed Mater Res B Appl Biomater. 2005;72:43–51.

    Article  Google Scholar 

  41. Ghicov A, Tsuchiya H, Macak JM, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun. 2005;7:505–9.

    Article  CAS  Google Scholar 

  42. Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev. 2010;62:305–15.

    Article  CAS  Google Scholar 

  43. Zilberman M, Eberhart RC. Drug-eluting bioresorbable stents for various applications. Annu Rev Biomed Eng. 2006;8:153–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Asaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asaf, R., Blum, S. (2013). Applications of Electrochemistry in the Design and Development of Medical Technologies and Devices. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_2

Download citation

Publish with us

Policies and ethics

Navigation